| author | paulson <lp15@cam.ac.uk> | 
| Tue, 23 Jun 2015 16:55:28 +0100 | |
| changeset 60562 | 24af00b010cf | 
| parent 60427 | b4b672f09270 | 
| child 60636 | ee18efe9b246 | 
| permissions | -rw-r--r-- | 
(* Title: HOL/Nat.thy Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel Type "nat" is a linear order, and a datatype; arithmetic operators + - and * (for div and mod, see theory Divides). *) section {* Natural numbers *} theory Nat imports Inductive Typedef Fun Fields begin ML_file "~~/src/Tools/rat.ML" named_theorems arith "arith facts -- only ground formulas" ML_file "Tools/arith_data.ML" ML_file "~~/src/Provers/Arith/fast_lin_arith.ML" subsection {* Type @{text ind} *} typedecl ind axiomatization Zero_Rep :: ind and Suc_Rep :: "ind => ind" where -- {* the axiom of infinity in 2 parts *} Suc_Rep_inject: "Suc_Rep x = Suc_Rep y ==> x = y" and Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" subsection {* Type nat *} text {* Type definition *} inductive Nat :: "ind \<Rightarrow> bool" where Zero_RepI: "Nat Zero_Rep" | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)" typedef nat = "{n. Nat n}" morphisms Rep_Nat Abs_Nat using Nat.Zero_RepI by auto lemma Nat_Rep_Nat: "Nat (Rep_Nat n)" using Rep_Nat by simp lemma Nat_Abs_Nat_inverse: "Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n" using Abs_Nat_inverse by simp lemma Nat_Abs_Nat_inject: "Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m" using Abs_Nat_inject by simp instantiation nat :: zero begin definition Zero_nat_def: "0 = Abs_Nat Zero_Rep" instance .. end definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" lemma Suc_not_Zero: "Suc m \<noteq> 0" by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat) lemma Zero_not_Suc: "0 \<noteq> Suc m" by (rule not_sym, rule Suc_not_Zero not_sym) lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y" by (rule iffI, rule Suc_Rep_inject) simp_all lemma nat_induct0: fixes n assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)" shows "P n" using assms apply (unfold Zero_nat_def Suc_def) apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *} apply (erule Nat_Rep_Nat [THEN Nat.induct]) apply (iprover elim: Nat_Abs_Nat_inverse [THEN subst]) done free_constructors case_nat for "0 \<Colon> nat" | Suc pred where "pred (0 \<Colon> nat) = (0 \<Colon> nat)" apply atomize_elim apply (rename_tac n, induct_tac n rule: nat_induct0, auto) apply (simp add: Suc_def Nat_Abs_Nat_inject Nat_Rep_Nat Suc_RepI Suc_Rep_inject' Rep_Nat_inject) apply (simp only: Suc_not_Zero) done -- {* Avoid name clashes by prefixing the output of @{text old_rep_datatype} with @{text old}. *} setup {* Sign.mandatory_path "old" *} old_rep_datatype "0 \<Colon> nat" Suc apply (erule nat_induct0, assumption) apply (rule nat.inject) apply (rule nat.distinct(1)) done setup {* Sign.parent_path *} -- {* But erase the prefix for properties that are not generated by @{text free_constructors}. *} setup {* Sign.mandatory_path "nat" *} declare old.nat.inject[iff del] old.nat.distinct(1)[simp del, induct_simp del] lemmas induct = old.nat.induct lemmas inducts = old.nat.inducts lemmas rec = old.nat.rec lemmas simps = nat.inject nat.distinct nat.case nat.rec setup {* Sign.parent_path *} abbreviation rec_nat :: "'a \<Rightarrow> (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a" where "rec_nat \<equiv> old.rec_nat" declare nat.sel[code del] hide_const (open) Nat.pred -- {* hide everything related to the selector *} hide_fact nat.case_eq_if nat.collapse nat.expand nat.sel nat.exhaust_sel nat.split_sel nat.split_sel_asm lemma nat_exhaust [case_names 0 Suc, cases type: nat]: -- {* for backward compatibility -- names of variables differ *} "(y = 0 \<Longrightarrow> P) \<Longrightarrow> (\<And>nat. y = Suc nat \<Longrightarrow> P) \<Longrightarrow> P" by (rule old.nat.exhaust) lemma nat_induct [case_names 0 Suc, induct type: nat]: -- {* for backward compatibility -- names of variables differ *} fixes n assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)" shows "P n" using assms by (rule nat.induct) hide_fact nat_exhaust nat_induct0 ML {* val nat_basic_lfp_sugar = let val ctr_sugar = the (Ctr_Sugar.ctr_sugar_of_global @{theory} @{type_name nat}); val recx = Logic.varify_types_global @{term rec_nat}; val C = body_type (fastype_of recx); in {T = HOLogic.natT, fp_res_index = 0, C = C, fun_arg_Tsss = [[], [[HOLogic.natT, C]]], ctr_sugar = ctr_sugar, recx = recx, rec_thms = @{thms nat.rec}} end; *} setup {* let fun basic_lfp_sugars_of _ [@{typ nat}] _ _ ctxt = ([], [0], [nat_basic_lfp_sugar], [], [], TrueI (*dummy*), [], false, ctxt) | basic_lfp_sugars_of bs arg_Ts callers callssss ctxt = BNF_LFP_Rec_Sugar.default_basic_lfp_sugars_of bs arg_Ts callers callssss ctxt; in BNF_LFP_Rec_Sugar.register_lfp_rec_extension {nested_simps = [], is_new_datatype = K (K true), basic_lfp_sugars_of = basic_lfp_sugars_of, rewrite_nested_rec_call = NONE} end *} text {* Injectiveness and distinctness lemmas *} lemma inj_Suc[simp]: "inj_on Suc N" by (simp add: inj_on_def) lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R" by (rule notE, rule Suc_not_Zero) lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R" by (rule Suc_neq_Zero, erule sym) lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y" by (rule inj_Suc [THEN injD]) lemma n_not_Suc_n: "n \<noteq> Suc n" by (induct n) simp_all lemma Suc_n_not_n: "Suc n \<noteq> n" by (rule not_sym, rule n_not_Suc_n) text {* A special form of induction for reasoning about @{term "m < n"} and @{term "m - n"} *} lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" apply (rule_tac x = m in spec) apply (induct n) prefer 2 apply (rule allI) apply (induct_tac x, iprover+) done subsection {* Arithmetic operators *} instantiation nat :: comm_monoid_diff begin primrec plus_nat where add_0: "0 + n = (n\<Colon>nat)" | add_Suc: "Suc m + n = Suc (m + n)" lemma add_0_right [simp]: "m + 0 = (m::nat)" by (induct m) simp_all lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" by (induct m) simp_all declare add_0 [code] lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" by simp primrec minus_nat where diff_0 [code]: "m - 0 = (m\<Colon>nat)" | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" declare diff_Suc [simp del] lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)" by (induct n) (simp_all add: diff_Suc) lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n" by (induct n) (simp_all add: diff_Suc) instance proof fix n m q :: nat show "(n + m) + q = n + (m + q)" by (induct n) simp_all show "n + m = m + n" by (induct n) simp_all show "m + n - m = n" by (induct m) simp_all show "n - m - q = n - (m + q)" by (induct q) (simp_all add: diff_Suc) show "0 + n = n" by simp show "0 - n = 0" by simp qed end hide_fact (open) add_0 add_0_right diff_0 instantiation nat :: comm_semiring_1_cancel begin definition One_nat_def [simp]: "1 = Suc 0" primrec times_nat where mult_0: "0 * n = (0\<Colon>nat)" | mult_Suc: "Suc m * n = n + (m * n)" lemma mult_0_right [simp]: "(m::nat) * 0 = 0" by (induct m) simp_all lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" by (induct m) (simp_all add: add.left_commute) lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" by (induct m) (simp_all add: add.assoc) instance proof fix n m q :: nat show "0 \<noteq> (1::nat)" unfolding One_nat_def by simp show "1 * n = n" unfolding One_nat_def by simp show "n * m = m * n" by (induct n) simp_all show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib) show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib) next fix k m n :: nat show "k * ((m::nat) - n) = (k * m) - (k * n)" by (induct m n rule: diff_induct) simp_all qed end text {* Difference distributes over multiplication *} lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" by (fact left_diff_distrib') lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" by (fact right_diff_distrib') subsubsection {* Addition *} lemma nat_add_left_cancel: fixes k m n :: nat shows "k + m = k + n \<longleftrightarrow> m = n" by (fact add_left_cancel) lemma nat_add_right_cancel: fixes k m n :: nat shows "m + k = n + k \<longleftrightarrow> m = n" by (fact add_right_cancel) text {* Reasoning about @{text "m + 0 = 0"}, etc. *} lemma add_is_0 [iff]: fixes m n :: nat shows "(m + n = 0) = (m = 0 & n = 0)" by (cases m) simp_all lemma add_is_1: "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" by (cases m) simp_all lemma one_is_add: "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" by (rule trans, rule eq_commute, rule add_is_1) lemma add_eq_self_zero: fixes m n :: nat shows "m + n = m \<Longrightarrow> n = 0" by (induct m) simp_all lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N" apply (induct k) apply simp apply(drule comp_inj_on[OF _ inj_Suc]) apply (simp add:o_def) done lemma Suc_eq_plus1: "Suc n = n + 1" unfolding One_nat_def by simp lemma Suc_eq_plus1_left: "Suc n = 1 + n" unfolding One_nat_def by simp subsubsection {* Difference *} lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0" by (fact diff_cancel) lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" by (fact diff_diff_add) lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" by (simp add: diff_diff_left) lemma diff_commute: "(i::nat) - j - k = i - k - j" by (fact diff_right_commute) lemma diff_add_inverse: "(n + m) - n = (m::nat)" by (fact add_diff_cancel_left') lemma diff_add_inverse2: "(m + n) - n = (m::nat)" by (fact add_diff_cancel_right') lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" by (fact add_diff_cancel_left) lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" by (fact add_diff_cancel_right) lemma diff_add_0: "n - (n + m) = (0::nat)" by (fact diff_add_zero) lemma diff_Suc_1 [simp]: "Suc n - 1 = n" unfolding One_nat_def by simp subsubsection {* Multiplication *} lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" by (fact distrib_left) lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" by (induct m) auto lemmas nat_distrib = add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = Suc 0 & n = Suc 0)" apply (induct m) apply simp apply (induct n) apply auto done lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)" apply (rule trans) apply (rule_tac [2] mult_eq_1_iff, fastforce) done lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1" unfolding One_nat_def by (rule mult_eq_1_iff) lemma nat_1_eq_mult_iff [simp]: "(1::nat) = m * n \<longleftrightarrow> m = 1 \<and> n = 1" unfolding One_nat_def by (rule one_eq_mult_iff) lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" proof - have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n" proof (induct n arbitrary: m) case 0 then show "m = 0" by simp next case (Suc n) then show "m = Suc n" by (cases m) (simp_all add: eq_commute [of "0"]) qed then show ?thesis by auto qed lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))" by (simp add: mult.commute) lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" by (subst mult_cancel1) simp subsection {* Orders on @{typ nat} *} subsubsection {* Operation definition *} instantiation nat :: linorder begin primrec less_eq_nat where "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)" declare less_eq_nat.simps [simp del] lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps) lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by simp definition less_nat where less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m" lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m" by (simp add: less_eq_nat.simps(2)) lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n" unfolding less_eq_Suc_le .. lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0" by (induct n) (simp_all add: less_eq_nat.simps(2)) lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)" by (simp add: less_eq_Suc_le) lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False" by simp lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n" by (simp add: less_eq_Suc_le) lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n" by (simp add: less_eq_Suc_le) lemma Suc_less_eq2: "Suc n < m \<longleftrightarrow> (\<exists>m'. m = Suc m' \<and> n < m')" by (cases m) auto lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n" by (induct m arbitrary: n) (simp_all add: less_eq_nat.simps(2) split: nat.splits) lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n" by (cases n) (auto intro: le_SucI) lemma less_SucI: "m < n \<Longrightarrow> m < Suc n" by (simp add: less_eq_Suc_le) (erule Suc_leD) lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n" by (simp add: less_eq_Suc_le) (erule Suc_leD) instance proof fix n m :: nat show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" proof (induct n arbitrary: m) case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le) next case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le) qed next fix n :: nat show "n \<le> n" by (induct n) simp_all next fix n m :: nat assume "n \<le> m" and "m \<le> n" then show "n = m" by (induct n arbitrary: m) (simp_all add: less_eq_nat.simps(2) split: nat.splits) next fix n m q :: nat assume "n \<le> m" and "m \<le> q" then show "n \<le> q" proof (induct n arbitrary: m q) case 0 show ?case by simp next case (Suc n) then show ?case by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits) qed next fix n m :: nat show "n \<le> m \<or> m \<le> n" by (induct n arbitrary: m) (simp_all add: less_eq_nat.simps(2) split: nat.splits) qed end instantiation nat :: order_bot begin definition bot_nat :: nat where "bot_nat = 0" instance proof qed (simp add: bot_nat_def) end instance nat :: no_top by default (auto intro: less_Suc_eq_le [THEN iffD2]) subsubsection {* Introduction properties *} lemma lessI [iff]: "n < Suc n" by (simp add: less_Suc_eq_le) lemma zero_less_Suc [iff]: "0 < Suc n" by (simp add: less_Suc_eq_le) subsubsection {* Elimination properties *} lemma less_not_refl: "~ n < (n::nat)" by (rule order_less_irrefl) lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" by (rule not_sym) (rule less_imp_neq) lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" by (rule less_imp_neq) lemma less_irrefl_nat: "(n::nat) < n ==> R" by (rule notE, rule less_not_refl) lemma less_zeroE: "(n::nat) < 0 ==> R" by (rule notE) (rule not_less0) lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" unfolding less_Suc_eq_le le_less .. lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" by (simp add: less_Suc_eq) lemma less_one [iff]: "(n < (1::nat)) = (n = 0)" unfolding One_nat_def by (rule less_Suc0) lemma Suc_mono: "m < n ==> Suc m < Suc n" by simp text {* "Less than" is antisymmetric, sort of *} lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" unfolding not_less less_Suc_eq_le by (rule antisym) lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)" by (rule linorder_neq_iff) lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" shows "P n m" apply (rule less_linear [THEN disjE]) apply (erule_tac [2] disjE) apply (erule lessCase) apply (erule sym [THEN eqCase]) apply (erule major) done subsubsection {* Inductive (?) properties *} lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" unfolding less_eq_Suc_le [of m] le_less by simp lemma lessE: assumes major: "i < k" and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" shows P proof - from major have "\<exists>j. i \<le> j \<and> k = Suc j" unfolding less_eq_Suc_le by (induct k) simp_all then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i" by (clarsimp simp add: less_le) with p1 p2 show P by auto qed lemma less_SucE: assumes major: "m < Suc n" and less: "m < n ==> P" and eq: "m = n ==> P" shows P apply (rule major [THEN lessE]) apply (rule eq, blast) apply (rule less, blast) done lemma Suc_lessE: assumes major: "Suc i < k" and minor: "!!j. i < j ==> k = Suc j ==> P" shows P apply (rule major [THEN lessE]) apply (erule lessI [THEN minor]) apply (erule Suc_lessD [THEN minor], assumption) done lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" by simp lemma less_trans_Suc: assumes le: "i < j" shows "j < k ==> Suc i < k" apply (induct k, simp_all) apply (insert le) apply (simp add: less_Suc_eq) apply (blast dest: Suc_lessD) done text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *} lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m" unfolding not_less less_Suc_eq_le .. lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m" unfolding not_le Suc_le_eq .. text {* Properties of "less than or equal" *} lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" unfolding less_Suc_eq_le . lemma Suc_n_not_le_n: "~ Suc n \<le> n" unfolding not_le less_Suc_eq_le .. lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)" by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq) lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" by (drule le_Suc_eq [THEN iffD1], iprover+) lemma Suc_leI: "m < n ==> Suc(m) \<le> n" unfolding Suc_le_eq . text {* Stronger version of @{text Suc_leD} *} lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" unfolding Suc_le_eq . lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)" unfolding less_eq_Suc_le by (rule Suc_leD) text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *} lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *} lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)" unfolding le_less . lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)" by (rule le_less) text {* Useful with @{text blast}. *} lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" by auto lemma le_refl: "n \<le> (n::nat)" by simp lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)" by (rule order_trans) lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)" by (rule antisym) lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" by (rule less_le) lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" unfolding less_le .. lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m" by (rule linear) lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat] lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" unfolding less_Suc_eq_le by auto lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" unfolding not_less by (rule le_less_Suc_eq) lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" by (cases n) simp_all lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m" by (cases n) simp_all lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0" by (cases n) simp_all lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)" by (cases n) simp_all text {* This theorem is useful with @{text blast} *} lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" by (rule neq0_conv[THEN iffD1], iprover) lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" by (fast intro: not0_implies_Suc) lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)" using neq0_conv by blast lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" by (induct m') simp_all text {* Useful in certain inductive arguments *} lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))" by (cases m) simp_all subsubsection {* Monotonicity of Addition *} lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n" by (simp add: diff_Suc split: nat.split) lemma Suc_diff_1 [simp]: "0 < n ==> Suc (n - 1) = n" unfolding One_nat_def by (rule Suc_pred) lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" by (induct k) simp_all lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" by (induct k) simp_all lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)" by(auto dest:gr0_implies_Suc) text {* strict, in 1st argument *} lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" by (induct k) simp_all text {* strict, in both arguments *} lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" apply (rule add_less_mono1 [THEN less_trans], assumption+) apply (induct j, simp_all) done text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *} lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" apply (induct n) apply (simp_all add: order_le_less) apply (blast elim!: less_SucE intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric]) done lemma le_Suc_ex: "(k::nat) \<le> l \<Longrightarrow> (\<exists>n. l = k + n)" by (auto simp: less_Suc_eq_le[symmetric] dest: less_imp_Suc_add) text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *} lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j" apply(auto simp: gr0_conv_Suc) apply (induct_tac m) apply (simp_all add: add_less_mono) done text {* Addition is the inverse of subtraction: if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *} lemma add_diff_inverse_nat: "~ m < n ==> n + (m - n) = (m::nat)" by (induct m n rule: diff_induct) simp_all text{*The naturals form an ordered @{text semidom}*} instance nat :: linordered_semidom proof show "0 < (1::nat)" by simp show "\<And>m n q :: nat. m \<le> n \<Longrightarrow> q + m \<le> q + n" by simp show "\<And>m n q :: nat. m < n \<Longrightarrow> 0 < q \<Longrightarrow> q * m < q * n" by (simp add: mult_less_mono2) show "\<And>m n :: nat. m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> m * n \<noteq> 0" by simp show "\<And>m n :: nat. n \<le> m ==> (m - n) + n = (m::nat)" by (simp add: add_diff_inverse_nat add.commute linorder_not_less) qed subsubsection {* @{term min} and @{term max} *} lemma mono_Suc: "mono Suc" by (rule monoI) simp lemma min_0L [simp]: "min 0 n = (0::nat)" by (rule min_absorb1) simp lemma min_0R [simp]: "min n 0 = (0::nat)" by (rule min_absorb2) simp lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" by (simp add: mono_Suc min_of_mono) lemma min_Suc1: "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))" by (simp split: nat.split) lemma min_Suc2: "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))" by (simp split: nat.split) lemma max_0L [simp]: "max 0 n = (n::nat)" by (rule max_absorb2) simp lemma max_0R [simp]: "max n 0 = (n::nat)" by (rule max_absorb1) simp lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" by (simp add: mono_Suc max_of_mono) lemma max_Suc1: "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))" by (simp split: nat.split) lemma max_Suc2: "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))" by (simp split: nat.split) lemma nat_mult_min_left: fixes m n q :: nat shows "min m n * q = min (m * q) (n * q)" by (simp add: min_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans) lemma nat_mult_min_right: fixes m n q :: nat shows "m * min n q = min (m * n) (m * q)" by (simp add: min_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans) lemma nat_add_max_left: fixes m n q :: nat shows "max m n + q = max (m + q) (n + q)" by (simp add: max_def) lemma nat_add_max_right: fixes m n q :: nat shows "m + max n q = max (m + n) (m + q)" by (simp add: max_def) lemma nat_mult_max_left: fixes m n q :: nat shows "max m n * q = max (m * q) (n * q)" by (simp add: max_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans) lemma nat_mult_max_right: fixes m n q :: nat shows "m * max n q = max (m * n) (m * q)" by (simp add: max_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans) subsubsection {* Additional theorems about @{term "op \<le>"} *} text {* Complete induction, aka course-of-values induction *} instance nat :: wellorder proof fix P and n :: nat assume step: "\<And>n::nat. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n" have "\<And>q. q \<le> n \<Longrightarrow> P q" proof (induct n) case (0 n) have "P 0" by (rule step) auto thus ?case using 0 by auto next case (Suc m n) then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq) thus ?case proof assume "n \<le> m" thus "P n" by (rule Suc(1)) next assume n: "n = Suc m" show "P n" by (rule step) (rule Suc(1), simp add: n le_simps) qed qed then show "P n" by auto qed lemma Least_eq_0[simp]: "P(0::nat) \<Longrightarrow> Least P = 0" by (rule Least_equality[OF _ le0]) lemma Least_Suc: "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" apply (cases n, auto) apply (frule LeastI) apply (drule_tac P = "%x. P (Suc x) " in LeastI) apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") apply (erule_tac [2] Least_le) apply (cases "LEAST x. P x", auto) apply (drule_tac P = "%x. P (Suc x) " in Least_le) apply (blast intro: order_antisym) done lemma Least_Suc2: "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" apply (erule (1) Least_Suc [THEN ssubst]) apply simp done lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)" apply (cases n) apply blast apply (rule_tac x="LEAST k. P(k)" in exI) apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex) done lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)" unfolding One_nat_def apply (cases n) apply blast apply (frule (1) ex_least_nat_le) apply (erule exE) apply (case_tac k) apply simp apply (rename_tac k1) apply (rule_tac x=k1 in exI) apply (auto simp add: less_eq_Suc_le) done lemma nat_less_induct: assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n" using assms less_induct by blast lemma measure_induct_rule [case_names less]: fixes f :: "'a \<Rightarrow> nat" assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x" shows "P a" by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step) text {* old style induction rules: *} lemma measure_induct: fixes f :: "'a \<Rightarrow> nat" shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a" by (rule measure_induct_rule [of f P a]) iprover lemma full_nat_induct: assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)" shows "P n" by (rule less_induct) (auto intro: step simp:le_simps) text{*An induction rule for estabilishing binary relations*} lemma less_Suc_induct: assumes less: "i < j" and step: "!!i. P i (Suc i)" and trans: "!!i j k. i < j ==> j < k ==> P i j ==> P j k ==> P i k" shows "P i j" proof - from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add) have "P i (Suc (i + k))" proof (induct k) case 0 show ?case by (simp add: step) next case (Suc k) have "0 + i < Suc k + i" by (rule add_less_mono1) simp hence "i < Suc (i + k)" by (simp add: add.commute) from trans[OF this lessI Suc step] show ?case by simp qed thus "P i j" by (simp add: j) qed text {* The method of infinite descent, frequently used in number theory. Provided by Roelof Oosterhuis. $P(n)$ is true for all $n\in\mathbb{N}$ if \begin{itemize} \item case ``0'': given $n=0$ prove $P(n)$, \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists a smaller integer $m$ such that $\neg P(m)$. \end{itemize} *} text{* A compact version without explicit base case: *} lemma infinite_descent: "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m \<rbrakk> \<Longrightarrow> P n" by (induct n rule: less_induct) auto lemma infinite_descent0[case_names 0 smaller]: "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n" by (rule infinite_descent) (case_tac "n>0", auto) text {* Infinite descent using a mapping to $\mathbb{N}$: $P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and \begin{itemize} \item case ``0'': given $V(x)=0$ prove $P(x)$, \item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$. \end{itemize} NB: the proof also shows how to use the previous lemma. *} corollary infinite_descent0_measure [case_names 0 smaller]: assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x" and A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)" shows "P x" proof - obtain n where "n = V x" by auto moreover have "\<And>x. V x = n \<Longrightarrow> P x" proof (induct n rule: infinite_descent0) case 0 -- "i.e. $V(x) = 0$" with A0 show "P x" by auto next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$" case (smaller n) then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto with A1 obtain y where "V y < V x \<and> \<not> P y" by auto with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto then show ?case by auto qed ultimately show "P x" by auto qed text{* Again, without explicit base case: *} lemma infinite_descent_measure: assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x" proof - from assms obtain n where "n = V x" by auto moreover have "!!x. V x = n \<Longrightarrow> P x" proof (induct n rule: infinite_descent, auto) fix x assume "\<not> P x" with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto qed ultimately show "P x" by auto qed text {* A [clumsy] way of lifting @{text "<"} monotonicity to @{text "\<le>"} monotonicity *} lemma less_mono_imp_le_mono: "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)" by (simp add: order_le_less) (blast) text {* non-strict, in 1st argument *} lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" by (rule add_right_mono) text {* non-strict, in both arguments *} lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)" by (rule add_mono) lemma le_add2: "n \<le> ((m + n)::nat)" by (insert add_right_mono [of 0 m n], simp) lemma le_add1: "n \<le> ((n + m)::nat)" by (simp add: add.commute, rule le_add2) lemma less_add_Suc1: "i < Suc (i + m)" by (rule le_less_trans, rule le_add1, rule lessI) lemma less_add_Suc2: "i < Suc (m + i)" by (rule le_less_trans, rule le_add2, rule lessI) lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" by (iprover intro!: less_add_Suc1 less_imp_Suc_add) lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" by (rule le_trans, assumption, rule le_add1) lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" by (rule le_trans, assumption, rule le_add2) lemma trans_less_add1: "(i::nat) < j ==> i < j + m" by (rule less_le_trans, assumption, rule le_add1) lemma trans_less_add2: "(i::nat) < j ==> i < m + j" by (rule less_le_trans, assumption, rule le_add2) lemma add_lessD1: "i + j < (k::nat) ==> i < k" apply (rule le_less_trans [of _ "i+j"]) apply (simp_all add: le_add1) done lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" apply (rule notI) apply (drule add_lessD1) apply (erule less_irrefl [THEN notE]) done lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" by (simp add: add.commute) lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" apply (rule order_trans [of _ "m+k"]) apply (simp_all add: le_add1) done lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" apply (simp add: add.commute) apply (erule add_leD1) done lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" by (blast dest: add_leD1 add_leD2) text {* needs @{text "!!k"} for @{text ac_simps} to work *} lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" by (force simp del: add_Suc_right simp add: less_iff_Suc_add add_Suc_right [symmetric] ac_simps) subsubsection {* More results about difference *} lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)" by (induct m n rule: diff_induct) simp_all lemma diff_less_Suc: "m - n < Suc m" apply (induct m n rule: diff_induct) apply (erule_tac [3] less_SucE) apply (simp_all add: less_Suc_eq) done lemma diff_le_self [simp]: "m - n \<le> (m::nat)" by (induct m n rule: diff_induct) (simp_all add: le_SucI) lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)" by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n]) instance nat :: ordered_cancel_comm_monoid_diff proof show "\<And>m n :: nat. m \<le> n \<longleftrightarrow> (\<exists>q. n = m + q)" by (fact le_iff_add) qed lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" by (rule le_less_trans, rule diff_le_self) lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n" by (cases n) (auto simp add: le_simps) lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)" by (induct j k rule: diff_induct) simp_all lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i" by (simp add: add.commute diff_add_assoc) lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)" by (auto simp add: diff_add_inverse2) lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)" by (induct m n rule: diff_induct) simp_all lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0" by (rule iffD2, rule diff_is_0_eq) lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" by (induct m n rule: diff_induct) simp_all lemma less_imp_add_positive: assumes "i < j" shows "\<exists>k::nat. 0 < k & i + k = j" proof from assms show "0 < j - i & i + (j - i) = j" by (simp add: order_less_imp_le) qed text {* a nice rewrite for bounded subtraction *} lemma nat_minus_add_max: fixes n m :: nat shows "n - m + m = max n m" by (simp add: max_def not_le order_less_imp_le) lemma nat_diff_split: "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" -- {* elimination of @{text -} on @{text nat} *} by (cases "a < b") (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse not_less le_less dest!: add_eq_self_zero add_eq_self_zero[OF sym]) lemma nat_diff_split_asm: "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" -- {* elimination of @{text -} on @{text nat} in assumptions *} by (auto split: nat_diff_split) lemma Suc_pred': "0 < n ==> n = Suc(n - 1)" by simp lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))" unfolding One_nat_def by (cases m) simp_all lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))" unfolding One_nat_def by (cases m) simp_all lemma Suc_diff_eq_diff_pred: "0 < n ==> Suc m - n = m - (n - 1)" unfolding One_nat_def by (cases n) simp_all lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n" unfolding One_nat_def by (cases m) simp_all lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)" by (fact Let_def) subsubsection {* Monotonicity of multiplication *} lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" by (simp add: mult_right_mono) lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" by (simp add: mult_left_mono) text {* @{text "\<le>"} monotonicity, BOTH arguments *} lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" by (simp add: mult_mono) lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" by (simp add: mult_strict_right_mono) text{*Differs from the standard @{text zero_less_mult_iff} in that there are no negative numbers.*} lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" apply (induct m) apply simp apply (case_tac n) apply simp_all done lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (Suc 0 \<le> m & Suc 0 \<le> n)" apply (induct m) apply simp apply (case_tac n) apply simp_all done lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" apply (safe intro!: mult_less_mono1) apply (cases k, auto) apply (simp del: le_0_eq add: linorder_not_le [symmetric]) apply (blast intro: mult_le_mono1) done lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" by (simp add: mult.commute [of k]) lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)" by (simp add: linorder_not_less [symmetric], auto) lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)" by (simp add: linorder_not_less [symmetric], auto) lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" by (subst mult_less_cancel1) simp lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" by (subst mult_le_cancel1) simp lemma le_square: "m \<le> m * (m::nat)" by (cases m) (auto intro: le_add1) lemma le_cube: "(m::nat) \<le> m * (m * m)" by (cases m) (auto intro: le_add1) text {* Lemma for @{text gcd} *} lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" apply (drule sym) apply (rule disjCI) apply (rule nat_less_cases, erule_tac [2] _) apply (drule_tac [2] mult_less_mono2) apply (auto) done lemma mono_times_nat: fixes n :: nat assumes "n > 0" shows "mono (times n)" proof fix m q :: nat assume "m \<le> q" with assms show "n * m \<le> n * q" by simp qed text {* the lattice order on @{typ nat} *} instantiation nat :: distrib_lattice begin definition "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min" definition "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max" instance by intro_classes (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def intro: order_less_imp_le antisym elim!: order_trans order_less_trans) end subsection {* Natural operation of natural numbers on functions *} text {* We use the same logical constant for the power operations on functions and relations, in order to share the same syntax. *} consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where "f ^^ n \<equiv> compow n f" notation (latex output) compower ("(_\<^bsup>_\<^esup>)" [1000] 1000) notation (HTML output) compower ("(_\<^bsup>_\<^esup>)" [1000] 1000) text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *} overloading funpow == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)" begin primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where "funpow 0 f = id" | "funpow (Suc n) f = f o funpow n f" end lemma funpow_Suc_right: "f ^^ Suc n = f ^^ n \<circ> f" proof (induct n) case 0 then show ?case by simp next fix n assume "f ^^ Suc n = f ^^ n \<circ> f" then show "f ^^ Suc (Suc n) = f ^^ Suc n \<circ> f" by (simp add: o_assoc) qed lemmas funpow_simps_right = funpow.simps(1) funpow_Suc_right text {* for code generation *} definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where funpow_code_def [code_abbrev]: "funpow = compow" lemma [code]: "funpow (Suc n) f = f o funpow n f" "funpow 0 f = id" by (simp_all add: funpow_code_def) hide_const (open) funpow lemma funpow_add: "f ^^ (m + n) = f ^^ m \<circ> f ^^ n" by (induct m) simp_all lemma funpow_mult: fixes f :: "'a \<Rightarrow> 'a" shows "(f ^^ m) ^^ n = f ^^ (m * n)" by (induct n) (simp_all add: funpow_add) lemma funpow_swap1: "f ((f ^^ n) x) = (f ^^ n) (f x)" proof - have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp also have "\<dots> = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add) also have "\<dots> = (f ^^ n) (f x)" by simp finally show ?thesis . qed lemma comp_funpow: fixes f :: "'a \<Rightarrow> 'a" shows "comp f ^^ n = comp (f ^^ n)" by (induct n) simp_all lemma Suc_funpow[simp]: "Suc ^^ n = (op + n)" by (induct n) simp_all lemma id_funpow[simp]: "id ^^ n = id" by (induct n) simp_all lemma funpow_mono: fixes f :: "'a \<Rightarrow> ('a::lattice)" shows "mono f \<Longrightarrow> A \<le> B \<Longrightarrow> (f ^^ n) A \<le> (f ^^ n) B" by (induct n arbitrary: A B) (auto simp del: funpow.simps(2) simp add: funpow_Suc_right mono_def) subsection {* Kleene iteration *} lemma Kleene_iter_lpfp: assumes "mono f" and "f p \<le> p" shows "(f^^k) (bot::'a::order_bot) \<le> p" proof(induction k) case 0 show ?case by simp next case Suc from monoD[OF assms(1) Suc] assms(2) show ?case by simp qed lemma lfp_Kleene_iter: assumes "mono f" and "(f^^Suc k) bot = (f^^k) bot" shows "lfp f = (f^^k) bot" proof(rule antisym) show "lfp f \<le> (f^^k) bot" proof(rule lfp_lowerbound) show "f ((f^^k) bot) \<le> (f^^k) bot" using assms(2) by simp qed next show "(f^^k) bot \<le> lfp f" using Kleene_iter_lpfp[OF assms(1)] lfp_unfold[OF assms(1)] by simp qed subsection {* Embedding of the naturals into any @{text semiring_1}: @{term of_nat} *} context semiring_1 begin definition of_nat :: "nat \<Rightarrow> 'a" where "of_nat n = (plus 1 ^^ n) 0" lemma of_nat_simps [simp]: shows of_nat_0: "of_nat 0 = 0" and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m" by (simp_all add: of_nat_def) lemma of_nat_1 [simp]: "of_nat 1 = 1" by (simp add: of_nat_def) lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n" by (induct m) (simp_all add: ac_simps) lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n" by (induct m) (simp_all add: ac_simps distrib_right) primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where "of_nat_aux inc 0 i = i" | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" -- {* tail recursive *} lemma of_nat_code: "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1" by (induct n) simp_all from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1" by simp with Suc show ?case by (simp add: add.commute) qed end declare of_nat_code [code] text{*Class for unital semirings with characteristic zero. Includes non-ordered rings like the complex numbers.*} class semiring_char_0 = semiring_1 + assumes inj_of_nat: "inj of_nat" begin lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n" by (auto intro: inj_of_nat injD) text{*Special cases where either operand is zero*} lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n" by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0]) lemma of_nat_eq_0_iff [simp]: "of_nat m = 0 \<longleftrightarrow> m = 0" by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0]) lemma of_nat_neq_0 [simp]: "of_nat (Suc n) \<noteq> 0" unfolding of_nat_eq_0_iff by simp lemma of_nat_0_neq [simp]: "0 \<noteq> of_nat (Suc n)" unfolding of_nat_0_eq_iff by simp end context linordered_semidom begin lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n" by (induct n) simp_all lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0" by (simp add: not_less) lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n" by (induct m n rule: diff_induct, simp_all add: add_pos_nonneg) lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n" by (simp add: not_less [symmetric] linorder_not_less [symmetric]) lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n" by simp lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n" by simp text{*Every @{text linordered_semidom} has characteristic zero.*} subclass semiring_char_0 proof qed (auto intro!: injI simp add: eq_iff) text{*Special cases where either operand is zero*} lemma of_nat_le_0_iff [simp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0" by (rule of_nat_le_iff [of _ 0, simplified]) lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n" by (rule of_nat_less_iff [of 0, simplified]) end context ring_1 begin lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n" by (simp add: algebra_simps of_nat_add [symmetric]) end context linordered_idom begin lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n" unfolding abs_if by auto end lemma of_nat_id [simp]: "of_nat n = n" by (induct n) simp_all lemma of_nat_eq_id [simp]: "of_nat = id" by (auto simp add: fun_eq_iff) subsection {* The set of natural numbers *} context semiring_1 begin definition Nats :: "'a set" where "Nats = range of_nat" notation (xsymbols) Nats ("\<nat>") lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>" by (simp add: Nats_def) lemma Nats_0 [simp]: "0 \<in> \<nat>" apply (simp add: Nats_def) apply (rule range_eqI) apply (rule of_nat_0 [symmetric]) done lemma Nats_1 [simp]: "1 \<in> \<nat>" apply (simp add: Nats_def) apply (rule range_eqI) apply (rule of_nat_1 [symmetric]) done lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>" apply (auto simp add: Nats_def) apply (rule range_eqI) apply (rule of_nat_add [symmetric]) done lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>" apply (auto simp add: Nats_def) apply (rule range_eqI) apply (rule of_nat_mult [symmetric]) done lemma Nats_cases [cases set: Nats]: assumes "x \<in> \<nat>" obtains (of_nat) n where "x = of_nat n" unfolding Nats_def proof - from `x \<in> \<nat>` have "x \<in> range of_nat" unfolding Nats_def . then obtain n where "x = of_nat n" .. then show thesis .. qed lemma Nats_induct [case_names of_nat, induct set: Nats]: "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x" by (rule Nats_cases) auto end subsection {* Further arithmetic facts concerning the natural numbers *} lemma subst_equals: assumes 1: "t = s" and 2: "u = t" shows "u = s" using 2 1 by (rule trans) ML_file "Tools/nat_arith.ML" simproc_setup nateq_cancel_sums ("(l::nat) + m = n" | "(l::nat) = m + n" | "Suc m = n" | "m = Suc n") = {* fn phi => try o Nat_Arith.cancel_eq_conv *} simproc_setup natless_cancel_sums ("(l::nat) + m < n" | "(l::nat) < m + n" | "Suc m < n" | "m < Suc n") = {* fn phi => try o Nat_Arith.cancel_less_conv *} simproc_setup natle_cancel_sums ("(l::nat) + m \<le> n" | "(l::nat) \<le> m + n" | "Suc m \<le> n" | "m \<le> Suc n") = {* fn phi => try o Nat_Arith.cancel_le_conv *} simproc_setup natdiff_cancel_sums ("(l::nat) + m - n" | "(l::nat) - (m + n)" | "Suc m - n" | "m - Suc n") = {* fn phi => try o Nat_Arith.cancel_diff_conv *} ML_file "Tools/lin_arith.ML" setup {* Lin_Arith.global_setup *} declaration {* K Lin_Arith.setup *} simproc_setup fast_arith_nat ("(m::nat) < n" | "(m::nat) <= n" | "(m::nat) = n") = {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (Thm.term_of ct) *} (* Because of this simproc, the arithmetic solver is really only useful to detect inconsistencies among the premises for subgoals which are *not* themselves (in)equalities, because the latter activate fast_nat_arith_simproc anyway. However, it seems cheaper to activate the solver all the time rather than add the additional check. *) lemmas [arith_split] = nat_diff_split split_min split_max context order begin lemma lift_Suc_mono_le: assumes mono: "\<And>n. f n \<le> f (Suc n)" and "n \<le> n'" shows "f n \<le> f n'" proof (cases "n < n'") case True then show ?thesis by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono) qed (insert `n \<le> n'`, auto) -- {* trivial for @{prop "n = n'"} *} lemma lift_Suc_antimono_le: assumes mono: "\<And>n. f n \<ge> f (Suc n)" and "n \<le> n'" shows "f n \<ge> f n'" proof (cases "n < n'") case True then show ?thesis by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono) qed (insert `n \<le> n'`, auto) -- {* trivial for @{prop "n = n'"} *} lemma lift_Suc_mono_less: assumes mono: "\<And>n. f n < f (Suc n)" and "n < n'" shows "f n < f n'" using `n < n'` by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono) lemma lift_Suc_mono_less_iff: "(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m" by (blast intro: less_asym' lift_Suc_mono_less [of f] dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq [THEN iffD1]) end lemma mono_iff_le_Suc: "mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" unfolding mono_def by (auto intro: lift_Suc_mono_le [of f]) lemma antimono_iff_le_Suc: "antimono f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" unfolding antimono_def by (auto intro: lift_Suc_antimono_le [of f]) lemma mono_nat_linear_lb: fixes f :: "nat \<Rightarrow> nat" assumes "\<And>m n. m < n \<Longrightarrow> f m < f n" shows "f m + k \<le> f (m + k)" proof (induct k) case 0 then show ?case by simp next case (Suc k) then have "Suc (f m + k) \<le> Suc (f (m + k))" by simp also from assms [of "m + k" "Suc (m + k)"] have "Suc (f (m + k)) \<le> f (Suc (m + k))" by (simp add: Suc_le_eq) finally show ?case by simp qed text{*Subtraction laws, mostly by Clemens Ballarin*} lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c" by arith lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))" by arith lemma less_diff_conv2: fixes j k i :: nat assumes "k \<le> j" shows "j - k < i \<longleftrightarrow> j < i + k" using assms by arith lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)" by arith lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))" by (fact le_diff_conv2) -- {* FIXME delete *} lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i" by arith lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k" by (fact le_add_diff) -- {* FIXME delete *} (*Replaces the previous diff_less and le_diff_less, which had the stronger second premise n\<le>m*) lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m" by arith text {* Simplification of relational expressions involving subtraction *} lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)" by (simp split add: nat_diff_split) hide_fact (open) diff_diff_eq lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)" by (auto split add: nat_diff_split) lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)" by (auto split add: nat_diff_split) lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)" by (auto split add: nat_diff_split) text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*} (* Monotonicity of subtraction in first argument *) lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)" by (simp split add: nat_diff_split) lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)" by (simp split add: nat_diff_split) lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)" by (simp split add: nat_diff_split) lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n" by (simp split add: nat_diff_split) lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i" by auto lemma inj_on_diff_nat: assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)" shows "inj_on (\<lambda>n. n - k) N" proof (rule inj_onI) fix x y assume a: "x \<in> N" "y \<in> N" "x - k = y - k" with k_le_n have "x - k + k = y - k + k" by auto with a k_le_n show "x = y" by auto qed text{*Rewriting to pull differences out*} lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j" by arith lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j" by arith lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)" by arith lemma Suc_diff_Suc: "n < m \<Longrightarrow> Suc (m - Suc n) = m - n" by simp (*The others are i - j - k = i - (j + k), k \<le> j ==> j - k + i = j + i - k, k \<le> j ==> i + (j - k) = i + j - k *) lemmas add_diff_assoc = diff_add_assoc [symmetric] lemmas add_diff_assoc2 = diff_add_assoc2[symmetric] declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp] text{*At present we prove no analogue of @{text not_less_Least} or @{text Least_Suc}, since there appears to be no need.*} text{*Lemmas for ex/Factorization*} lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n" by (cases m) auto lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n" by (cases m) auto lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m" by (cases m) auto text {* Specialized induction principles that work "backwards": *} lemma inc_induct[consumes 1, case_names base step]: assumes less: "i \<le> j" assumes base: "P j" assumes step: "\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P (Suc n) \<Longrightarrow> P n" shows "P i" using less step proof (induct d\<equiv>"j - i" arbitrary: i) case (0 i) hence "i = j" by simp with base show ?case by simp next case (Suc d n) hence "n \<le> n" "n < j" "P (Suc n)" by simp_all then show "P n" by fact qed lemma strict_inc_induct[consumes 1, case_names base step]: assumes less: "i < j" assumes base: "!!i. j = Suc i ==> P i" assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" shows "P i" using less proof (induct d=="j - i - 1" arbitrary: i) case (0 i) with `i < j` have "j = Suc i" by simp with base show ?case by simp next case (Suc d i) hence "i < j" "P (Suc i)" by simp_all thus "P i" by (rule step) qed lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" using inc_induct[of "k - i" k P, simplified] by blast lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" using inc_induct[of 0 k P] by blast text {* Further induction rule similar to @{thm inc_induct} *} lemma dec_induct[consumes 1, case_names base step]: "i \<le> j \<Longrightarrow> P i \<Longrightarrow> (\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n \<Longrightarrow> P (Suc n)) \<Longrightarrow> P j" by (induct j arbitrary: i) (auto simp: le_Suc_eq) subsection \<open> Monotonicity of funpow \<close> lemma funpow_increasing: fixes f :: "'a \<Rightarrow> ('a::{lattice, order_top})" shows "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ n) \<top> \<le> (f ^^ m) \<top>" by (induct rule: inc_induct) (auto simp del: funpow.simps(2) simp add: funpow_Suc_right intro: order_trans[OF _ funpow_mono]) lemma funpow_decreasing: fixes f :: "'a \<Rightarrow> ('a::{lattice, order_bot})" shows "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ m) \<bottom> \<le> (f ^^ n) \<bottom>" by (induct rule: dec_induct) (auto simp del: funpow.simps(2) simp add: funpow_Suc_right intro: order_trans[OF _ funpow_mono]) lemma mono_funpow: fixes Q :: "'a::{lattice, order_bot} \<Rightarrow> 'a" shows "mono Q \<Longrightarrow> mono (\<lambda>i. (Q ^^ i) \<bottom>)" by (auto intro!: funpow_decreasing simp: mono_def) lemma antimono_funpow: fixes Q :: "'a::{lattice, order_top} \<Rightarrow> 'a" shows "mono Q \<Longrightarrow> antimono (\<lambda>i. (Q ^^ i) \<top>)" by (auto intro!: funpow_increasing simp: antimono_def) subsection {* The divides relation on @{typ nat} *} lemma dvd_1_left [iff]: "Suc 0 dvd k" unfolding dvd_def by simp lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)" by (simp add: dvd_def) lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1" by (simp add: dvd_def) lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)" unfolding dvd_def by (force dest: mult_eq_self_implies_10 simp add: mult.assoc) text {* @{term "op dvd"} is a partial order *} interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n" proof qed (auto intro: dvd_refl dvd_trans dvd_antisym) lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)" unfolding dvd_def by (blast intro: diff_mult_distrib2 [symmetric]) lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)" apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst]) apply (blast intro: dvd_add) done lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)" by (drule_tac m = m in dvd_diff_nat, auto) lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n" unfolding dvd_def apply (erule exE) apply (simp add: ac_simps) done lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))" apply auto apply (subgoal_tac "m*n dvd m*1") apply (drule dvd_mult_cancel, auto) done lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))" apply (subst mult.commute) apply (erule dvd_mult_cancel1) done lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)" by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) lemma nat_dvd_not_less: fixes m n :: nat shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m" by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) lemma less_eq_dvd_minus: fixes m n :: nat assumes "m \<le> n" shows "m dvd n \<longleftrightarrow> m dvd n - m" proof - from assms have "n = m + (n - m)" by simp then obtain q where "n = m + q" .. then show ?thesis by (simp add: add.commute [of m]) qed lemma dvd_minus_self: fixes m n :: nat shows "m dvd n - m \<longleftrightarrow> n < m \<or> m dvd n" by (cases "n < m") (auto elim!: dvdE simp add: not_less le_imp_diff_is_add) lemma dvd_minus_add: fixes m n q r :: nat assumes "q \<le> n" "q \<le> r * m" shows "m dvd n - q \<longleftrightarrow> m dvd n + (r * m - q)" proof - have "m dvd n - q \<longleftrightarrow> m dvd r * m + (n - q)" using dvd_add_times_triv_left_iff [of m r] by simp also from assms have "\<dots> \<longleftrightarrow> m dvd r * m + n - q" by simp also from assms have "\<dots> \<longleftrightarrow> m dvd (r * m - q) + n" by simp also have "\<dots> \<longleftrightarrow> m dvd n + (r * m - q)" by (simp add: add.commute) finally show ?thesis . qed subsection {* Aliases *} lemma nat_mult_1: "(1::nat) * n = n" by (fact mult_1_left) lemma nat_mult_1_right: "n * (1::nat) = n" by (fact mult_1_right) subsection {* Size of a datatype value *} class size = fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *} instantiation nat :: size begin definition size_nat where [simp, code]: "size (n \<Colon> nat) = n" instance .. end subsection {* Code module namespace *} code_identifier code_module Nat \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith hide_const (open) of_nat_aux end