(* Title: Tools/Code/code_scala.ML
Author: Florian Haftmann, TU Muenchen
Serializer for Scala.
*)
signature CODE_SCALA =
sig
val target: string
val setup: theory -> theory
end;
structure Code_Scala : CODE_SCALA =
struct
val target = "Scala";
open Basic_Code_Thingol;
open Code_Printer;
infixr 5 @@;
infixr 5 @|;
(** Scala serializer **)
fun print_scala_stmt labelled_name tyco_syntax const_syntax reserved
args_num is_singleton_constr (deresolve, deresolve_full) =
let
fun lookup_tyvar tyvars = lookup_var tyvars o first_upper;
fun intro_tyvars vs = intro_vars (map (first_upper o fst) vs);
fun print_tyco_expr tyvars fxy (tyco, tys) = applify "[" "]"
(print_typ tyvars NOBR) fxy ((str o deresolve) tyco) tys
and print_typ tyvars fxy (tyco `%% tys) = (case tyco_syntax tyco
of NONE => print_tyco_expr tyvars fxy (tyco, tys)
| SOME (i, print) => print (print_typ tyvars) fxy tys)
| print_typ tyvars fxy (ITyVar v) = (str o lookup_tyvar tyvars) v;
fun print_dicttyp tyvars (class, ty) = print_tyco_expr tyvars NOBR (class, [ty]);
fun print_tupled_typ tyvars ([], ty) =
print_typ tyvars NOBR ty
| print_tupled_typ tyvars ([ty1], ty2) =
concat [print_typ tyvars BR ty1, str "=>", print_typ tyvars NOBR ty2]
| print_tupled_typ tyvars (tys, ty) =
concat [enum "," "(" ")" (map (print_typ tyvars NOBR) tys),
str "=>", print_typ tyvars NOBR ty];
fun constraint p1 p2 = Pretty.block [p1, str ":", Pretty.brk 1, p2];
fun print_var vars NONE = str "_"
| print_var vars (SOME v) = (str o lookup_var vars) v
fun print_term tyvars is_pat some_thm vars fxy (IConst c) =
print_app tyvars is_pat some_thm vars fxy (c, [])
| print_term tyvars is_pat some_thm vars fxy (t as (t1 `$ t2)) =
(case Code_Thingol.unfold_const_app t
of SOME app => print_app tyvars is_pat some_thm vars fxy app
| _ => applify "(" ")" (print_term tyvars is_pat some_thm vars NOBR) fxy
(print_term tyvars is_pat some_thm vars BR t1) [t2])
| print_term tyvars is_pat some_thm vars fxy (IVar v) =
print_var vars v
| print_term tyvars is_pat some_thm vars fxy ((v, ty) `|=> t) =
let
val vars' = intro_vars (the_list v) vars;
in
concat [
enclose "(" ")" [constraint (print_var vars' v) (print_typ tyvars NOBR ty)],
str "=>",
print_term tyvars false some_thm vars' NOBR t
]
end
| print_term tyvars is_pat some_thm vars fxy (ICase (cases as (_, t0))) =
(case Code_Thingol.unfold_const_app t0
of SOME (c_ts as ((c, _), _)) => if is_none (const_syntax c)
then print_case tyvars some_thm vars fxy cases
else print_app tyvars is_pat some_thm vars fxy c_ts
| NONE => print_case tyvars some_thm vars fxy cases)
and print_app tyvars is_pat some_thm vars fxy
(app as ((c, ((arg_typs, _), function_typs)), ts)) =
let
val k = length ts;
val arg_typs' = if is_pat orelse
(is_none (const_syntax c) andalso is_singleton_constr c) then [] else arg_typs;
val (l, print') = case const_syntax c
of NONE => (args_num c, fn fxy => fn ts => applify "(" ")"
(print_term tyvars is_pat some_thm vars NOBR) fxy
(applify "[" "]" (print_typ tyvars NOBR)
NOBR ((str o deresolve) c) arg_typs') ts)
| SOME (Plain_const_syntax (k, s)) => (k, fn fxy => fn ts => applify "(" ")"
(print_term tyvars is_pat some_thm vars NOBR) fxy
(applify "[" "]" (print_typ tyvars NOBR)
NOBR (str s) arg_typs') ts)
| SOME (Complex_const_syntax (k, print)) =>
(k, fn fxy => fn ts => print (print_term tyvars is_pat some_thm) some_thm vars fxy
(ts ~~ take k function_typs))
in if k = l then print' fxy ts
else if k < l then
print_term tyvars is_pat some_thm vars fxy (Code_Thingol.eta_expand l app)
else let
val (ts1, ts23) = chop l ts;
in
Pretty.block (print' BR ts1 :: map (fn t => Pretty.block
[str ".apply(", print_term tyvars is_pat some_thm vars NOBR t, str ")"]) ts23)
end end
and print_bind tyvars some_thm fxy p =
gen_print_bind (print_term tyvars true) some_thm fxy p
and print_case tyvars some_thm vars fxy (cases as ((_, [_]), _)) =
let
val (binds, body) = Code_Thingol.unfold_let (ICase cases);
fun print_match ((IVar NONE, _), t) vars =
((true, print_term tyvars false some_thm vars NOBR t), vars)
| print_match ((pat, ty), t) vars =
vars
|> print_bind tyvars some_thm BR pat
|>> (fn p => (false, concat [str "val", constraint p (print_typ tyvars NOBR ty),
str "=", print_term tyvars false some_thm vars NOBR t]))
val (seps_ps, vars') = fold_map print_match binds vars;
val all_seps_ps = seps_ps @ [(true, print_term tyvars false some_thm vars' NOBR body)];
fun insert_seps [(_, p)] = [p]
| insert_seps ((_, p) :: (seps_ps as (sep, _) :: _)) =
(if sep then Pretty.block [p, str ";"] else p) :: insert_seps seps_ps
in brackify_block fxy (str "{") (insert_seps all_seps_ps) (str "}")
end
| print_case tyvars some_thm vars fxy (((t, ty), clauses as _ :: _), _) =
let
fun print_select (pat, body) =
let
val (p_pat, vars') = print_bind tyvars some_thm NOBR pat vars;
val p_body = print_term tyvars false some_thm vars' NOBR body
in concat [str "case", p_pat, str "=>", p_body] end;
in brackify_block fxy
(concat [print_term tyvars false some_thm vars NOBR t, str "match", str "{"])
(map print_select clauses)
(str "}")
end
| print_case tyvars some_thm vars fxy ((_, []), _) =
(brackify fxy o Pretty.breaks o map str) ["error(\"empty case\")"];
fun print_context tyvars vs name = applify "[" "]"
(fn (v, sort) => (Pretty.block o map str)
(lookup_tyvar tyvars v :: maps (fn sort => [": ", deresolve sort]) sort))
NOBR ((str o deresolve) name) vs;
fun print_defhead tyvars vars name vs params tys ty =
Pretty.block [str "def ", constraint (applify "(" ")" (fn (param, ty) =>
constraint ((str o lookup_var vars) param) (print_typ tyvars NOBR ty))
NOBR (print_context tyvars vs name) (params ~~ tys)) (print_typ tyvars NOBR ty),
str " ="];
fun print_def name (vs, ty) [] =
let
val (tys, ty') = Code_Thingol.unfold_fun ty;
val params = Name.invents (snd reserved) "a" (length tys);
val tyvars = intro_tyvars vs reserved;
val vars = intro_vars params reserved;
in
concat [print_defhead tyvars vars name vs params tys ty',
str ("error(\"" ^ name ^ "\")")]
end
| print_def name (vs, ty) eqs =
let
val tycos = fold (fn ((ts, t), _) =>
fold Code_Thingol.add_tyconames (t :: ts)) eqs [];
val tyvars = reserved
|> intro_base_names
(is_none o tyco_syntax) deresolve tycos
|> intro_tyvars vs;
val simple = case eqs
of [((ts, _), _)] => forall Code_Thingol.is_IVar ts
| _ => false;
val consts = fold Code_Thingol.add_constnames
(map (snd o fst) eqs) [];
val vars1 = reserved
|> intro_base_names
(is_none o const_syntax) deresolve consts
val params = if simple
then (map (fn IVar (SOME x) => x) o fst o fst o hd) eqs
else aux_params vars1 (map (fst o fst) eqs);
val vars2 = intro_vars params vars1;
val (tys', ty') = Code_Thingol.unfold_fun_n (length params) ty;
fun tuplify [p] = p
| tuplify ps = enum "," "(" ")" ps;
fun print_rhs vars' ((_, t), (some_thm, _)) =
print_term tyvars false some_thm vars' NOBR t;
fun print_clause (eq as ((ts, _), (some_thm, _))) =
let
val vars' = intro_vars ((fold o Code_Thingol.fold_varnames)
(insert (op =)) ts []) vars1;
in
concat [str "case",
tuplify (map (print_term tyvars true some_thm vars' NOBR) ts),
str "=>", print_rhs vars' eq]
end;
val head = print_defhead tyvars vars2 name vs params tys' ty';
in if simple then
concat [head, print_rhs vars2 (hd eqs)]
else
Pretty.block_enclose
(concat [head, tuplify (map (str o lookup_var vars2) params),
str "match", str "{"], str "}")
(map print_clause eqs)
end;
val print_method = str o Library.enclose "`" "`" o space_implode "+"
o Long_Name.explode o deresolve_full;
fun print_stmt (name, Code_Thingol.Fun (_, (((vs, ty), raw_eqs), _))) =
print_def name (vs, ty) (filter (snd o snd) raw_eqs)
| print_stmt (name, Code_Thingol.Datatype (_, (vs, cos))) =
let
val tyvars = intro_tyvars vs reserved;
fun print_co ((co, _), []) =
concat [str "final", str "case", str "object", (str o deresolve) co,
str "extends", applify "[" "]" I NOBR ((str o deresolve) name)
(replicate (length vs) (str "Nothing"))]
| print_co ((co, vs_args), tys) =
concat [applify "(" ")"
(fn (v, arg) => constraint (str v) (print_typ tyvars NOBR arg)) NOBR
(applify "[" "]" (str o lookup_tyvar tyvars) NOBR ((concat o map str)
["final", "case", "class", deresolve co]) vs_args)
(Name.names (snd reserved) "a" tys),
str "extends",
applify "[" "]" (str o lookup_tyvar tyvars o fst) NOBR
((str o deresolve) name) vs
];
in
Pretty.chunks (applify "[" "]" (str o prefix "+" o lookup_tyvar tyvars o fst)
NOBR ((concat o map str) ["abstract", "sealed", "class", deresolve name]) vs
:: map print_co cos)
end
| print_stmt (name, Code_Thingol.Class (_, (v, (super_classes, classparams)))) =
let
val tyvars = intro_tyvars [(v, [name])] reserved;
fun add_typarg s = Pretty.block
[str s, str "[", (str o lookup_tyvar tyvars) v, str "]"];
fun print_super_classes [] = NONE
| print_super_classes classes = SOME (concat (str "extends"
:: separate (str "with") (map (add_typarg o deresolve o fst) classes)));
fun print_classparam_val (classparam, ty) =
concat [str "val", constraint (print_method classparam)
((print_tupled_typ tyvars o Code_Thingol.unfold_fun) ty)];
fun print_classparam_def (classparam, ty) =
let
val (tys, ty) = Code_Thingol.unfold_fun ty;
val [implicit_name] = Name.invents (snd reserved) (lookup_tyvar tyvars v) 1;
val proto_vars = intro_vars [implicit_name] reserved;
val auxs = Name.invents (snd proto_vars) "a" (length tys);
val vars = intro_vars auxs proto_vars;
in
concat [str "def", constraint (Pretty.block [applify "(" ")"
(fn (aux, ty) => constraint ((str o lookup_var vars) aux)
(print_typ tyvars NOBR ty)) NOBR (add_typarg (deresolve classparam))
(auxs ~~ tys), str "(implicit ", str implicit_name, str ": ",
add_typarg (deresolve name), str ")"]) (print_typ tyvars NOBR ty), str "=",
applify "(" ")" (str o lookup_var vars) NOBR
(Pretty.block [str implicit_name, str ".", print_method classparam]) auxs]
end;
in
Pretty.chunks (
(Pretty.block_enclose
(concat ([str "trait", (add_typarg o deresolve) name]
@ the_list (print_super_classes super_classes) @ [str "{"]), str "}")
(map print_classparam_val classparams))
:: map print_classparam_def classparams
)
end
| print_stmt (name, Code_Thingol.Classinst ((class, (tyco, vs)),
(super_instances, (classparam_instances, further_classparam_instances)))) =
let
val tyvars = intro_tyvars vs reserved;
val classtyp = (class, tyco `%% map (ITyVar o fst) vs);
fun print_classparam_instance ((classparam, const as (_, (_, tys))), (thm, _)) =
let
val aux_tys = Name.names (snd reserved) "a" tys;
val auxs = map fst aux_tys;
val vars = intro_vars auxs reserved;
val aux_abstr = if null auxs then [] else [enum "," "(" ")"
(map (fn (aux, ty) => constraint ((str o lookup_var vars) aux)
(print_typ tyvars NOBR ty)) aux_tys), str "=>"];
in
concat ([str "val", print_method classparam, str "="]
@ aux_abstr @| print_app tyvars false (SOME thm) vars NOBR
(const, map (IVar o SOME) auxs))
end;
in
Pretty.block_enclose (concat [str "implicit def",
constraint (print_context tyvars vs name) (print_dicttyp tyvars classtyp),
str "=", str "new", print_dicttyp tyvars classtyp, str "{"], str "}")
(map print_classparam_instance (classparam_instances @ further_classparam_instances))
end;
in print_stmt end;
local
(* hierarchical module name space *)
datatype node =
Dummy
| Stmt of Code_Thingol.stmt
| Module of (string list * (string * node) Graph.T);
in
fun scala_program_of_program labelled_name reserved module_alias program =
let
(* building module name hierarchy *)
fun alias_fragments name = case module_alias name
of SOME name' => Long_Name.explode name'
| NONE => map (fn name => fst (yield_singleton Name.variants name reserved))
(Long_Name.explode name);
val module_names = Graph.fold (insert (op =) o fst o dest_name o fst) program [];
val fragments_tab = fold (fn name => Symtab.update
(name, alias_fragments name)) module_names Symtab.empty;
val dest_name = Code_Printer.dest_name #>> (the o Symtab.lookup fragments_tab);
(* building empty module hierarchy *)
val empty_module = ([], Graph.empty);
fun map_module f (Module content) = Module (f content);
fun change_module [] = I
| change_module (name_fragment :: name_fragments) =
apsnd o Graph.map_node name_fragment o apsnd o map_module
o change_module name_fragments;
fun ensure_module name_fragment (implicits, nodes) =
if can (Graph.get_node nodes) name_fragment then (implicits, nodes)
else (implicits,
nodes |> Graph.new_node (name_fragment, (name_fragment, Module empty_module)));
fun allocate_module [] = I
| allocate_module (name_fragment :: name_fragments) =
ensure_module name_fragment
#> (apsnd o Graph.map_node name_fragment o apsnd o map_module o allocate_module) name_fragments;
val empty_program = Symtab.fold (fn (_, fragments) => allocate_module fragments)
fragments_tab empty_module;
(* distribute statements over hierarchy *)
fun add_stmt name stmt =
let
val (name_fragments, base) = dest_name name;
fun is_classinst stmt = case stmt
of Code_Thingol.Classinst _ => true
| _ => false;
val implicit_deps = filter (is_classinst o Graph.get_node program)
(Graph.imm_succs program name);
in
change_module name_fragments (fn (implicits, nodes) =>
(union (op =) implicit_deps implicits, Graph.new_node (name, (base, Stmt stmt)) nodes))
end;
fun add_dependency name name' =
let
val (name_fragments, base) = dest_name name;
val (name_fragments', base') = dest_name name';
val (name_fragments_common, (diff, diff')) =
chop_prefix (op =) (name_fragments, name_fragments');
val dep = if null diff then (name, name') else (hd diff, hd diff')
in (change_module name_fragments_common o apsnd) (Graph.add_edge dep) end;
val proto_program = empty_program
|> Graph.fold (fn (name, (stmt, _)) => add_stmt name stmt) program
|> Graph.fold (fn (name, (_, (_, names))) => fold (add_dependency name) names) program;
(* name declarations *)
fun namify_module name_fragment ((nsp_class, nsp_object), nsp_common) =
let
val declare = Name.declare name_fragment;
in (name_fragment, ((declare nsp_class, declare nsp_object), declare nsp_common)) end;
fun namify_class base ((nsp_class, nsp_object), nsp_common) =
let
val (base', nsp_class') = yield_singleton Name.variants base nsp_class
in (base', ((nsp_class', nsp_object), Name.declare base' nsp_common)) end;
fun namify_object base ((nsp_class, nsp_object), nsp_common) =
let
val (base', nsp_object') = yield_singleton Name.variants base nsp_object
in (base', ((nsp_class, nsp_object'), Name.declare base' nsp_common)) end;
fun namify_common upper base ((nsp_class, nsp_object), nsp_common) =
let
val (base', nsp_common') =
yield_singleton Name.variants (if upper then first_upper base else base) nsp_common
in
(base',
((Name.declare base' nsp_class, Name.declare base' nsp_object), nsp_common'))
end;
fun namify_stmt (Code_Thingol.Fun _) = namify_object
| namify_stmt (Code_Thingol.Datatype _) = namify_class
| namify_stmt (Code_Thingol.Datatypecons _) = namify_common true
| namify_stmt (Code_Thingol.Class _) = namify_class
| namify_stmt (Code_Thingol.Classrel _) = namify_object
| namify_stmt (Code_Thingol.Classparam _) = namify_object
| namify_stmt (Code_Thingol.Classinst _) = namify_common false;
fun make_declarations nsps (implicits, nodes) =
let
val (module_fragments, stmt_names) = List.partition
(fn name_fragment => case Graph.get_node nodes name_fragment
of (_, Module _) => true | _ => false) (Graph.keys nodes);
fun modify_stmt (Stmt (Code_Thingol.Datatypecons _)) = Dummy
| modify_stmt (Stmt (Code_Thingol.Classrel _)) = Dummy
| modify_stmt (Stmt (Code_Thingol.Classparam _)) = Dummy
| modify_stmt stmt = stmt;
fun declare namify modify name (nsps, nodes) =
let
val (base, node) = Graph.get_node nodes name;
val (base', nsps') = namify node base nsps;
val nodes' = Graph.map_node name (K (base', modify node)) nodes;
in (nsps', nodes') end;
val (nsps', nodes') = (nsps, nodes)
|> fold (declare (K namify_module) I) module_fragments
|> fold (declare (namify_stmt o (fn Stmt stmt => stmt)) modify_stmt) stmt_names;
val nodes'' = nodes'
|> fold (fn name_fragment => (Graph.map_node name_fragment
o apsnd o map_module) (make_declarations nsps')) module_fragments;
in (implicits, nodes'') end;
val (_, sca_program) = make_declarations ((reserved, reserved), reserved) proto_program;
(* deresolving *)
fun deresolver prefix_fragments name =
let
val (name_fragments, _) = dest_name name;
val (_, (_, remainder)) = chop_prefix (op =) (prefix_fragments, name_fragments);
val nodes = fold (fn name_fragment => fn nodes => case Graph.get_node nodes name_fragment
of (_, Module (_, nodes)) => nodes) name_fragments sca_program;
val (base', _) = Graph.get_node nodes name;
in Long_Name.implode (remainder @ [base']) end
handle Graph.UNDEF _ => error ("Unknown statement name: " ^ labelled_name name);
in (deresolver, sca_program) end;
fun serialize_scala { labelled_name, reserved_syms, includes, single_module,
module_alias, class_syntax, tyco_syntax, const_syntax, program,
names, presentation_names } =
let
(* build program *)
val reserved = fold (insert (op =) o fst) includes reserved_syms;
val (deresolver, sca_program) = scala_program_of_program labelled_name
(Name.make_context reserved) module_alias program;
(* print statements *)
fun lookup_constr tyco constr = case Graph.get_node program tyco
of Code_Thingol.Datatype (_, (_, constrs)) =>
the (AList.lookup (op = o apsnd fst) constrs constr);
fun classparams_of_class class = case Graph.get_node program class
of Code_Thingol.Class (_, (_, (_, classparams))) => classparams;
fun args_num c = case Graph.get_node program c
of Code_Thingol.Fun (_, (((_, ty), []), _)) =>
(length o fst o Code_Thingol.unfold_fun) ty
| Code_Thingol.Fun (_, ((_, ((ts, _), _) :: _), _)) => length ts
| Code_Thingol.Datatypecons (_, tyco) => length (lookup_constr tyco c)
| Code_Thingol.Classparam (_, class) =>
(length o fst o Code_Thingol.unfold_fun o the o AList.lookup (op =)
(classparams_of_class class)) c;
fun is_singleton_constr c = case Graph.get_node program c
of Code_Thingol.Datatypecons (_, tyco) => null (lookup_constr tyco c)
| _ => false;
val print_stmt = print_scala_stmt labelled_name tyco_syntax const_syntax
(make_vars reserved) args_num is_singleton_constr;
(* print nodes *)
fun print_module base implicit_ps p = Pretty.chunks2
([str ("object " ^ base ^ " {")]
@ (if null implicit_ps then [] else (single o Pretty.block)
(str "import /*implicits*/" :: Pretty.brk 1 :: commas implicit_ps))
@ [p, str ("} /* object " ^ base ^ " */")]);
fun print_implicit prefix_fragments implicit =
let
val s = deresolver prefix_fragments implicit;
in if length (Long_Name.explode s) = 1 then NONE else SOME (str s) end;
fun print_node _ (_, Dummy) = NONE
| print_node prefix_fragments (name, Stmt stmt) =
if null presentation_names
orelse member (op =) presentation_names name
then SOME (print_stmt (deresolver prefix_fragments, deresolver []) (name, stmt))
else NONE
| print_node prefix_fragments (name_fragment, Module (implicits, nodes)) =
if null presentation_names
then
let
val prefix_fragments' = prefix_fragments @ [name_fragment];
in
Option.map (print_module name_fragment
(map_filter (print_implicit prefix_fragments') implicits))
(print_nodes prefix_fragments' nodes)
end
else print_nodes [] nodes
and print_nodes prefix_fragments nodes = let
val ps = map_filter (fn name => print_node prefix_fragments (name,
snd (Graph.get_node nodes name)))
((rev o flat o Graph.strong_conn) nodes);
in if null ps then NONE else SOME (Pretty.chunks2 ps) end;
(* serialization *)
val p_includes = if null presentation_names
then map (fn (base, p) => print_module base [] p) includes else [];
val p = Pretty.chunks2 (p_includes @ the_list (print_nodes [] sca_program));
fun write width NONE = writeln_pretty width
| write width (SOME p) = File.write p o string_of_pretty width;
in
Code_Target.serialization write (rpair [] oo string_of_pretty) p
end;
end; (*local*)
val literals = let
fun char_scala c = if c = "'" then "\\'"
else if c = "\"" then "\\\""
else if c = "\\" then "\\\\"
else let val k = ord c
in if k < 32 orelse k > 126 then "\\" ^ radixstring (8, "0", k) else c end
fun numeral_scala k = if k < 0
then if k > ~ 2147483647 then "- " ^ string_of_int (~ k)
else quote ("- " ^ string_of_int (~ k))
else if k <= 2147483647 then string_of_int k
else quote (string_of_int k)
in Literals {
literal_char = Library.enclose "'" "'" o char_scala,
literal_string = quote o translate_string char_scala,
literal_numeral = fn k => "BigInt(" ^ numeral_scala k ^ ")",
literal_positive_numeral = fn k => "Nat.Nat(" ^ numeral_scala k ^ ")",
literal_alternative_numeral = fn k => "Natural.Nat(" ^ numeral_scala k ^ ")",
literal_naive_numeral = fn k => "BigInt(" ^ numeral_scala k ^ ")",
literal_list = fn [] => str "Nil" | ps => Pretty.block [str "List", enum "," "(" ")" ps],
infix_cons = (6, "::")
} end;
(** Isar setup **)
val isar_serializer =
Code_Target.parse_args (Scan.succeed ()) #> K serialize_scala;
val setup =
Code_Target.add_target
(target, { serializer = isar_serializer, literals = literals,
check = { env_var = "SCALA_HOME", make_destination = fn p => Path.append p (Path.explode "ROOT.scala"),
make_command = fn scala_home => fn _ =>
"export JAVA_OPTS='-Xms128m -Xmx512m -Xss2m' && "
^ Path.implode (Path.append (Path.explode scala_home) (Path.explode "bin/scalac")) ^ " ROOT.scala" } })
#> Code_Target.add_tyco_syntax target "fun"
(SOME (2, fn print_typ => fn fxy => fn [ty1, ty2] =>
brackify_infix (1, R) fxy (
print_typ BR ty1 (*product type vs. tupled arguments!*),
str "=>",
print_typ (INFX (1, R)) ty2
)))
#> fold (Code_Target.add_reserved target) [
"abstract", "case", "catch", "class", "def", "do", "else", "extends", "false",
"final", "finally", "for", "forSome", "if", "implicit", "import", "lazy",
"match", "new", "null", "object", "override", "package", "private", "protected",
"requires", "return", "sealed", "super", "this", "throw", "trait", "try",
"true", "type", "val", "var", "while", "with", "yield"
]
#> fold (Code_Target.add_reserved target) [
"apply", "error", "BigInt", "Nil", "List"
];
end; (*struct*)