more appropriate conversion of HOL character literals to character codes: symbolic newline is interpreted as 0x10
(* Title: HOL/Binomial.thy
Author: Jacques D. Fleuriot
Author: Lawrence C Paulson
Author: Jeremy Avigad
Author: Chaitanya Mangla
Author: Manuel Eberl
*)
section \<open>Binomial Coefficients and Binomial Theorem\<close>
theory Binomial
imports Presburger Factorial
begin
subsection \<open>Binomial coefficients\<close>
text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close>
text \<open>Combinatorial definition\<close>
definition binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65)
where "n choose k = card {K\<in>Pow {0..<n}. card K = k}"
theorem n_subsets:
assumes "finite A"
shows "card {B. B \<subseteq> A \<and> card B = k} = card A choose k"
proof -
from assms obtain f where bij: "bij_betw f {0..<card A} A"
by (blast dest: ex_bij_betw_nat_finite)
then have [simp]: "card (f ` C) = card C" if "C \<subseteq> {0..<card A}" for C
by (meson bij_betw_imp_inj_on bij_betw_subset card_image that)
from bij have "bij_betw (image f) (Pow {0..<card A}) (Pow A)"
by (rule bij_betw_Pow)
then have "inj_on (image f) (Pow {0..<card A})"
by (rule bij_betw_imp_inj_on)
moreover have "{K. K \<subseteq> {0..<card A} \<and> card K = k} \<subseteq> Pow {0..<card A}"
by auto
ultimately have "inj_on (image f) {K. K \<subseteq> {0..<card A} \<and> card K = k}"
by (rule inj_on_subset)
then have "card {K. K \<subseteq> {0..<card A} \<and> card K = k} =
card (image f ` {K. K \<subseteq> {0..<card A} \<and> card K = k})" (is "_ = card ?C")
by (simp add: card_image)
also have "?C = {K. K \<subseteq> f ` {0..<card A} \<and> card K = k}"
by (auto elim!: subset_imageE)
also have "f ` {0..<card A} = A"
by (meson bij bij_betw_def)
finally show ?thesis
by (simp add: binomial_def)
qed
text \<open>Recursive characterization\<close>
lemma binomial_n_0 [simp]: "n choose 0 = 1"
proof -
have "{K \<in> Pow {0..<n}. card K = 0} = {{}}"
by (auto dest: finite_subset)
then show ?thesis
by (simp add: binomial_def)
qed
lemma binomial_0_Suc [simp]: "0 choose Suc k = 0"
by (simp add: binomial_def)
lemma binomial_Suc_Suc [simp]: "Suc n choose Suc k = (n choose k) + (n choose Suc k)"
proof -
let ?P = "\<lambda>n k. {K. K \<subseteq> {0..<n} \<and> card K = k}"
let ?Q = "?P (Suc n) (Suc k)"
have inj: "inj_on (insert n) (?P n k)"
by rule (auto; metis atLeastLessThan_iff insert_iff less_irrefl subsetCE)
have disjoint: "insert n ` ?P n k \<inter> ?P n (Suc k) = {}"
by auto
have "?Q = {K\<in>?Q. n \<in> K} \<union> {K\<in>?Q. n \<notin> K}"
by auto
also have "{K\<in>?Q. n \<in> K} = insert n ` ?P n k" (is "?A = ?B")
proof (rule set_eqI)
fix K
have K_finite: "finite K" if "K \<subseteq> insert n {0..<n}"
using that by (rule finite_subset) simp_all
have Suc_card_K: "Suc (card K - Suc 0) = card K" if "n \<in> K"
and "finite K"
proof -
from \<open>n \<in> K\<close> obtain L where "K = insert n L" and "n \<notin> L"
by (blast elim: Set.set_insert)
with that show ?thesis by (simp add: card_insert)
qed
show "K \<in> ?A \<longleftrightarrow> K \<in> ?B"
by (subst in_image_insert_iff)
(auto simp add: card_insert subset_eq_atLeast0_lessThan_finite
Diff_subset_conv K_finite Suc_card_K)
qed
also have "{K\<in>?Q. n \<notin> K} = ?P n (Suc k)"
by (auto simp add: atLeast0_lessThan_Suc)
finally show ?thesis using inj disjoint
by (simp add: binomial_def card_Un_disjoint card_image)
qed
lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0"
by (auto simp add: binomial_def dest: subset_eq_atLeast0_lessThan_card)
lemma zero_less_binomial: "k \<le> n \<Longrightarrow> n choose k > 0"
by (induct n k rule: diff_induct) simp_all
lemma binomial_eq_0_iff [simp]: "n choose k = 0 \<longleftrightarrow> n < k"
by (metis binomial_eq_0 less_numeral_extra(3) not_less zero_less_binomial)
lemma zero_less_binomial_iff [simp]: "n choose k > 0 \<longleftrightarrow> k \<le> n"
by (metis binomial_eq_0_iff not_less0 not_less zero_less_binomial)
lemma binomial_n_n [simp]: "n choose n = 1"
by (induct n) (simp_all add: binomial_eq_0)
lemma binomial_Suc_n [simp]: "Suc n choose n = Suc n"
by (induct n) simp_all
lemma binomial_1 [simp]: "n choose Suc 0 = n"
by (induct n) simp_all
lemma choose_reduce_nat:
"0 < n \<Longrightarrow> 0 < k \<Longrightarrow>
n choose k = ((n - 1) choose (k - 1)) + ((n - 1) choose k)"
using binomial_Suc_Suc [of "n - 1" "k - 1"] by simp
lemma Suc_times_binomial_eq: "Suc n * (n choose k) = (Suc n choose Suc k) * Suc k"
apply (induct n arbitrary: k)
apply simp
apply arith
apply (case_tac k)
apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0)
done
lemma binomial_le_pow2: "n choose k \<le> 2^n"
apply (induct n arbitrary: k)
apply (case_tac k)
apply simp_all
apply (case_tac k)
apply auto
apply (simp add: add_le_mono mult_2)
done
text \<open>The absorption property.\<close>
lemma Suc_times_binomial: "Suc k * (Suc n choose Suc k) = Suc n * (n choose k)"
using Suc_times_binomial_eq by auto
text \<open>This is the well-known version of absorption, but it's harder to use
because of the need to reason about division.\<close>
lemma binomial_Suc_Suc_eq_times: "(Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k"
by (simp add: Suc_times_binomial_eq del: mult_Suc mult_Suc_right)
text \<open>Another version of absorption, with \<open>-1\<close> instead of \<open>Suc\<close>.\<close>
lemma times_binomial_minus1_eq: "0 < k \<Longrightarrow> k * (n choose k) = n * ((n - 1) choose (k - 1))"
using Suc_times_binomial_eq [where n = "n - 1" and k = "k - 1"]
by (auto split: nat_diff_split)
subsection \<open>The binomial theorem (courtesy of Tobias Nipkow):\<close>
text \<open>Avigad's version, generalized to any commutative ring\<close>
theorem binomial_ring: "(a + b :: 'a::{comm_ring_1,power})^n =
(\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n-k))"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have decomp: "{0..n+1} = {0} \<union> {n + 1} \<union> {1..n}"
by auto
have decomp2: "{0..n} = {0} \<union> {1..n}"
by auto
have "(a + b)^(n+1) = (a + b) * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k))"
using Suc.hyps by simp
also have "\<dots> = a * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k)) +
b * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k))"
by (rule distrib_right)
also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
(\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k + 1))"
by (auto simp add: sum_distrib_left ac_simps)
also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n + 1 - k)) +
(\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))"
by (simp add: atMost_atLeast0 sum_shift_bounds_cl_Suc_ivl Suc_diff_le field_simps del: sum_cl_ivl_Suc)
also have "\<dots> = a^(n + 1) + b^(n + 1) +
(\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k)) +
(\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n + 1 - k))"
by (simp add: atMost_atLeast0 decomp2)
also have "\<dots> = a^(n + 1) + b^(n + 1) +
(\<Sum>k=1..n. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat)
also have "\<dots> = (\<Sum>k\<le>n+1. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))"
using decomp by (simp add: atMost_atLeast0 field_simps)
finally show ?case
by simp
qed
text \<open>Original version for the naturals.\<close>
corollary binomial: "(a + b :: nat)^n = (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n - k))"
using binomial_ring [of "int a" "int b" n]
by (simp only: of_nat_add [symmetric] of_nat_mult [symmetric] of_nat_power [symmetric]
of_nat_sum [symmetric] of_nat_eq_iff of_nat_id)
lemma binomial_fact_lemma: "k \<le> n \<Longrightarrow> fact k * fact (n - k) * (n choose k) = fact n"
proof (induct n arbitrary: k rule: nat_less_induct)
fix n k
assume H: "\<forall>m<n. \<forall>x\<le>m. fact x * fact (m - x) * (m choose x) = fact m"
assume kn: "k \<le> n"
let ?ths = "fact k * fact (n - k) * (n choose k) = fact n"
consider "n = 0 \<or> k = 0 \<or> n = k" | m h where "n = Suc m" "k = Suc h" "h < m"
using kn by atomize_elim presburger
then show "fact k * fact (n - k) * (n choose k) = fact n"
proof cases
case 1
with kn show ?thesis by auto
next
case 2
note n = \<open>n = Suc m\<close>
note k = \<open>k = Suc h\<close>
note hm = \<open>h < m\<close>
have mn: "m < n"
using n by arith
have hm': "h \<le> m"
using hm by arith
have km: "k \<le> m"
using hm k n kn by arith
have "m - h = Suc (m - Suc h)"
using k km hm by arith
with km k have "fact (m - h) = (m - h) * fact (m - k)"
by simp
with n k have "fact k * fact (n - k) * (n choose k) =
k * (fact h * fact (m - h) * (m choose h)) +
(m - h) * (fact k * fact (m - k) * (m choose k))"
by (simp add: field_simps)
also have "\<dots> = (k + (m - h)) * fact m"
using H[rule_format, OF mn hm'] H[rule_format, OF mn km]
by (simp add: field_simps)
finally show ?thesis
using k n km by simp
qed
qed
lemma binomial_fact':
assumes "k \<le> n"
shows "n choose k = fact n div (fact k * fact (n - k))"
using binomial_fact_lemma [OF assms]
by (metis fact_nonzero mult_eq_0_iff nonzero_mult_div_cancel_left)
lemma binomial_fact:
assumes kn: "k \<le> n"
shows "(of_nat (n choose k) :: 'a::field_char_0) = fact n / (fact k * fact (n - k))"
using binomial_fact_lemma[OF kn]
apply (simp add: field_simps)
apply (metis mult.commute of_nat_fact of_nat_mult)
done
lemma fact_binomial:
assumes "k \<le> n"
shows "fact k * of_nat (n choose k) = (fact n / fact (n - k) :: 'a::field_char_0)"
unfolding binomial_fact [OF assms] by (simp add: field_simps)
lemma choose_two: "n choose 2 = n * (n - 1) div 2"
proof (cases "n \<ge> 2")
case False
then have "n = 0 \<or> n = 1"
by auto
then show ?thesis by auto
next
case True
define m where "m = n - 2"
with True have "n = m + 2"
by simp
then have "fact n = n * (n - 1) * fact (n - 2)"
by (simp add: fact_prod_Suc atLeast0_lessThan_Suc algebra_simps)
with True show ?thesis
by (simp add: binomial_fact')
qed
lemma choose_row_sum: "(\<Sum>k\<le>n. n choose k) = 2^n"
using binomial [of 1 "1" n] by (simp add: numeral_2_eq_2)
lemma sum_choose_lower: "(\<Sum>k\<le>n. (r+k) choose k) = Suc (r+n) choose n"
by (induct n) auto
lemma sum_choose_upper: "(\<Sum>k\<le>n. k choose m) = Suc n choose Suc m"
by (induct n) auto
lemma choose_alternating_sum:
"n > 0 \<Longrightarrow> (\<Sum>i\<le>n. (-1)^i * of_nat (n choose i)) = (0 :: 'a::comm_ring_1)"
using binomial_ring[of "-1 :: 'a" 1 n]
by (simp add: atLeast0AtMost mult_of_nat_commute zero_power)
lemma choose_even_sum:
assumes "n > 0"
shows "2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"
proof -
have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) + (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)"
using choose_row_sum[of n]
by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric])
also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) + (-1) ^ i * of_nat (n choose i))"
by (simp add: sum.distrib)
also have "\<dots> = 2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0)"
by (subst sum_distrib_left, intro sum.cong) simp_all
finally show ?thesis ..
qed
lemma choose_odd_sum:
assumes "n > 0"
shows "2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)"
proof -
have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) - (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)"
using choose_row_sum[of n]
by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric])
also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) - (-1) ^ i * of_nat (n choose i))"
by (simp add: sum_subtractf)
also have "\<dots> = 2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0)"
by (subst sum_distrib_left, intro sum.cong) simp_all
finally show ?thesis ..
qed
text\<open>NW diagonal sum property\<close>
lemma sum_choose_diagonal:
assumes "m \<le> n"
shows "(\<Sum>k\<le>m. (n - k) choose (m - k)) = Suc n choose m"
proof -
have "(\<Sum>k\<le>m. (n-k) choose (m - k)) = (\<Sum>k\<le>m. (n - m + k) choose k)"
using sum.atLeastAtMost_rev [of "\<lambda>k. (n - k) choose (m - k)" 0 m] assms
by (simp add: atMost_atLeast0)
also have "\<dots> = Suc (n - m + m) choose m"
by (rule sum_choose_lower)
also have "\<dots> = Suc n choose m"
using assms by simp
finally show ?thesis .
qed
subsection \<open>Generalized binomial coefficients\<close>
definition gbinomial :: "'a::{semidom_divide,semiring_char_0} \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65)
where gbinomial_prod_rev: "a gchoose k = prod (\<lambda>i. a - of_nat i) {0..<k} div fact k"
lemma gbinomial_0 [simp]:
"a gchoose 0 = 1"
"0 gchoose (Suc k) = 0"
by (simp_all add: gbinomial_prod_rev prod.atLeast0_lessThan_Suc_shift)
lemma gbinomial_Suc: "a gchoose (Suc k) = prod (\<lambda>i. a - of_nat i) {0..k} div fact (Suc k)"
by (simp add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
lemma gbinomial_1 [simp]: "a gchoose 1 = a"
by (simp add: gbinomial_prod_rev lessThan_Suc)
lemma gbinomial_Suc0 [simp]: "a gchoose Suc 0 = a"
by (simp add: gbinomial_prod_rev lessThan_Suc)
lemma gbinomial_mult_fact: "fact k * (a gchoose k) = (\<Prod>i = 0..<k. a - of_nat i)"
for a :: "'a::field_char_0"
by (simp_all add: gbinomial_prod_rev field_simps)
lemma gbinomial_mult_fact': "(a gchoose k) * fact k = (\<Prod>i = 0..<k. a - of_nat i)"
for a :: "'a::field_char_0"
using gbinomial_mult_fact [of k a] by (simp add: ac_simps)
lemma gbinomial_pochhammer: "a gchoose k = (- 1) ^ k * pochhammer (- a) k / fact k"
for a :: "'a::field_char_0"
by (cases k)
(simp_all add: pochhammer_minus,
simp_all add: gbinomial_prod_rev pochhammer_prod_rev
power_mult_distrib [symmetric] atLeastLessThanSuc_atLeastAtMost
prod.atLeast_Suc_atMost_Suc_shift of_nat_diff)
lemma gbinomial_pochhammer': "a gchoose k = pochhammer (a - of_nat k + 1) k / fact k"
for a :: "'a::field_char_0"
proof -
have "a gchoose k = ((-1)^k * (-1)^k) * pochhammer (a - of_nat k + 1) k / fact k"
by (simp add: gbinomial_pochhammer pochhammer_minus mult_ac)
also have "(-1 :: 'a)^k * (-1)^k = 1"
by (subst power_add [symmetric]) simp
finally show ?thesis
by simp
qed
lemma gbinomial_binomial: "n gchoose k = n choose k"
proof (cases "k \<le> n")
case False
then have "n < k"
by (simp add: not_le)
then have "0 \<in> ((-) n) ` {0..<k}"
by auto
then have "prod ((-) n) {0..<k} = 0"
by (auto intro: prod_zero)
with \<open>n < k\<close> show ?thesis
by (simp add: binomial_eq_0 gbinomial_prod_rev prod_zero)
next
case True
from True have *: "prod ((-) n) {0..<k} = \<Prod>{Suc (n - k)..n}"
by (intro prod.reindex_bij_witness[of _ "\<lambda>i. n - i" "\<lambda>i. n - i"]) auto
from True have "n choose k = fact n div (fact k * fact (n - k))"
by (rule binomial_fact')
with * show ?thesis
by (simp add: gbinomial_prod_rev mult.commute [of "fact k"] div_mult2_eq fact_div_fact)
qed
lemma of_nat_gbinomial: "of_nat (n gchoose k) = (of_nat n gchoose k :: 'a::field_char_0)"
proof (cases "k \<le> n")
case False
then show ?thesis
by (simp add: not_le gbinomial_binomial binomial_eq_0 gbinomial_prod_rev)
next
case True
define m where "m = n - k"
with True have n: "n = m + k"
by arith
from n have "fact n = ((\<Prod>i = 0..<m + k. of_nat (m + k - i) ):: 'a)"
by (simp add: fact_prod_rev)
also have "\<dots> = ((\<Prod>i\<in>{0..<k} \<union> {k..<m + k}. of_nat (m + k - i)) :: 'a)"
by (simp add: ivl_disj_un)
finally have "fact n = (fact m * (\<Prod>i = 0..<k. of_nat m + of_nat k - of_nat i) :: 'a)"
using prod_shift_bounds_nat_ivl [of "\<lambda>i. of_nat (m + k - i) :: 'a" 0 k m]
by (simp add: fact_prod_rev [of m] prod.union_disjoint of_nat_diff)
then have "fact n / fact (n - k) = ((\<Prod>i = 0..<k. of_nat n - of_nat i) :: 'a)"
by (simp add: n)
with True have "fact k * of_nat (n gchoose k) = (fact k * (of_nat n gchoose k) :: 'a)"
by (simp only: gbinomial_mult_fact [of k "of_nat n"] gbinomial_binomial [of n k] fact_binomial)
then show ?thesis
by simp
qed
lemma binomial_gbinomial: "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)"
by (simp add: gbinomial_binomial [symmetric] of_nat_gbinomial)
setup
\<open>Sign.add_const_constraint (@{const_name gbinomial}, SOME @{typ "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a"})\<close>
lemma gbinomial_mult_1:
fixes a :: "'a::field_char_0"
shows "a * (a gchoose k) = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))"
(is "?l = ?r")
proof -
have "?r = ((- 1) ^k * pochhammer (- a) k / fact k) * (of_nat k - (- a + of_nat k))"
apply (simp only: gbinomial_pochhammer pochhammer_Suc right_diff_distrib power_Suc)
apply (simp del: of_nat_Suc fact_Suc)
apply (auto simp add: field_simps simp del: of_nat_Suc)
done
also have "\<dots> = ?l"
by (simp add: field_simps gbinomial_pochhammer)
finally show ?thesis ..
qed
lemma gbinomial_mult_1':
"(a gchoose k) * a = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))"
for a :: "'a::field_char_0"
by (simp add: mult.commute gbinomial_mult_1)
lemma gbinomial_Suc_Suc: "(a + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
for a :: "'a::field_char_0"
proof (cases k)
case 0
then show ?thesis by simp
next
case (Suc h)
have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
apply (rule prod.reindex_cong [where l = Suc])
using Suc
apply (auto simp add: image_Suc_atMost)
done
have "fact (Suc k) * (a gchoose k + (a gchoose (Suc k))) =
(a gchoose Suc h) * (fact (Suc (Suc h))) +
(a gchoose Suc (Suc h)) * (fact (Suc (Suc h)))"
by (simp add: Suc field_simps del: fact_Suc)
also have "\<dots> =
(a gchoose Suc h) * of_nat (Suc (Suc h) * fact (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)"
apply (simp del: fact_Suc add: gbinomial_mult_fact field_simps mult.left_commute [of _ "2"])
apply (simp del: fact_Suc add: fact_Suc [of "Suc h"] field_simps gbinomial_mult_fact
mult.left_commute [of _ "2"] atLeastLessThanSuc_atLeastAtMost)
done
also have "\<dots> =
(fact (Suc h) * (a gchoose Suc h)) * of_nat (Suc (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)"
by (simp only: fact_Suc mult.commute mult.left_commute of_nat_fact of_nat_id of_nat_mult)
also have "\<dots> =
of_nat (Suc (Suc h)) * (\<Prod>i=0..h. a - of_nat i) + (\<Prod>i=0..Suc h. a - of_nat i)"
unfolding gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost by auto
also have "\<dots> =
(\<Prod>i=0..Suc h. a - of_nat i) + (of_nat h * (\<Prod>i=0..h. a - of_nat i) + 2 * (\<Prod>i=0..h. a - of_nat i))"
by (simp add: field_simps)
also have "\<dots> =
((a gchoose Suc h) * (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0..Suc h}. a - of_nat i)"
unfolding gbinomial_mult_fact'
by (simp add: comm_semiring_class.distrib field_simps Suc atLeastLessThanSuc_atLeastAtMost)
also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
unfolding gbinomial_mult_fact' atLeast0_atMost_Suc
by (simp add: field_simps Suc atLeastLessThanSuc_atLeastAtMost)
also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
using eq0
by (simp add: Suc prod.atLeast0_atMost_Suc_shift)
also have "\<dots> = (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
by (simp only: gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost)
finally show ?thesis
using fact_nonzero [of "Suc k"] by auto
qed
lemma gbinomial_reduce_nat: "0 < k \<Longrightarrow> a gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
for a :: "'a::field_char_0"
by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
lemma gchoose_row_sum_weighted:
"(\<Sum>k = 0..m. (r gchoose k) * (r/2 - of_nat k)) = of_nat(Suc m) / 2 * (r gchoose (Suc m))"
for r :: "'a::field_char_0"
by (induct m) (simp_all add: field_simps distrib gbinomial_mult_1)
lemma binomial_symmetric:
assumes kn: "k \<le> n"
shows "n choose k = n choose (n - k)"
proof -
have kn': "n - k \<le> n"
using kn by arith
from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn']
have "fact k * fact (n - k) * (n choose k) = fact (n - k) * fact (n - (n - k)) * (n choose (n - k))"
by simp
then show ?thesis
using kn by simp
qed
lemma choose_rising_sum:
"(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))"
"(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose m)"
proof -
show "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))"
by (induct m) simp_all
also have "\<dots> = (n + m + 1) choose m"
by (subst binomial_symmetric) simp_all
finally show "(\<Sum>j\<le>m. ((n + j) choose n)) = (n + m + 1) choose m" .
qed
lemma choose_linear_sum: "(\<Sum>i\<le>n. i * (n choose i)) = n * 2 ^ (n - 1)"
proof (cases n)
case 0
then show ?thesis by simp
next
case (Suc m)
have "(\<Sum>i\<le>n. i * (n choose i)) = (\<Sum>i\<le>Suc m. i * (Suc m choose i))"
by (simp add: Suc)
also have "\<dots> = Suc m * 2 ^ m"
unfolding sum_atMost_Suc_shift Suc_times_binomial sum_distrib_left[symmetric]
by (simp add: choose_row_sum)
finally show ?thesis
using Suc by simp
qed
lemma choose_alternating_linear_sum:
assumes "n \<noteq> 1"
shows "(\<Sum>i\<le>n. (-1)^i * of_nat i * of_nat (n choose i) :: 'a::comm_ring_1) = 0"
proof (cases n)
case 0
then show ?thesis by simp
next
case (Suc m)
with assms have "m > 0"
by simp
have "(\<Sum>i\<le>n. (-1) ^ i * of_nat i * of_nat (n choose i) :: 'a) =
(\<Sum>i\<le>Suc m. (-1) ^ i * of_nat i * of_nat (Suc m choose i))"
by (simp add: Suc)
also have "\<dots> = (\<Sum>i\<le>m. (-1) ^ (Suc i) * of_nat (Suc i * (Suc m choose Suc i)))"
by (simp only: sum_atMost_Suc_shift sum_distrib_left[symmetric] mult_ac of_nat_mult) simp
also have "\<dots> = - of_nat (Suc m) * (\<Sum>i\<le>m. (-1) ^ i * of_nat (m choose i))"
by (subst sum_distrib_left, rule sum.cong[OF refl], subst Suc_times_binomial)
(simp add: algebra_simps)
also have "(\<Sum>i\<le>m. (-1 :: 'a) ^ i * of_nat ((m choose i))) = 0"
using choose_alternating_sum[OF \<open>m > 0\<close>] by simp
finally show ?thesis
by simp
qed
lemma vandermonde: "(\<Sum>k\<le>r. (m choose k) * (n choose (r - k))) = (m + n) choose r"
proof (induct n arbitrary: r)
case 0
have "(\<Sum>k\<le>r. (m choose k) * (0 choose (r - k))) = (\<Sum>k\<le>r. if k = r then (m choose k) else 0)"
by (intro sum.cong) simp_all
also have "\<dots> = m choose r"
by simp
finally show ?case
by simp
next
case (Suc n r)
show ?case
by (cases r) (simp_all add: Suc [symmetric] algebra_simps sum.distrib Suc_diff_le)
qed
lemma choose_square_sum: "(\<Sum>k\<le>n. (n choose k)^2) = ((2*n) choose n)"
using vandermonde[of n n n]
by (simp add: power2_eq_square mult_2 binomial_symmetric [symmetric])
lemma pochhammer_binomial_sum:
fixes a b :: "'a::comm_ring_1"
shows "pochhammer (a + b) n = (\<Sum>k\<le>n. of_nat (n choose k) * pochhammer a k * pochhammer b (n - k))"
proof (induction n arbitrary: a b)
case 0
then show ?case by simp
next
case (Suc n a b)
have "(\<Sum>k\<le>Suc n. of_nat (Suc n choose k) * pochhammer a k * pochhammer b (Suc n - k)) =
(\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
((\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
pochhammer b (Suc n))"
by (subst sum_atMost_Suc_shift) (simp add: ring_distribs sum.distrib)
also have "(\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) =
a * pochhammer ((a + 1) + b) n"
by (subst Suc) (simp add: sum_distrib_left pochhammer_rec mult_ac)
also have "(\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) +
pochhammer b (Suc n) =
(\<Sum>i=0..Suc n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))"
apply (subst sum_head_Suc)
apply simp
apply (subst sum_shift_bounds_cl_Suc_ivl)
apply (simp add: atLeast0AtMost)
done
also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))"
using Suc by (intro sum.mono_neutral_right) (auto simp: not_le binomial_eq_0)
also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc (n - i)))"
by (intro sum.cong) (simp_all add: Suc_diff_le)
also have "\<dots> = b * pochhammer (a + (b + 1)) n"
by (subst Suc) (simp add: sum_distrib_left mult_ac pochhammer_rec)
also have "a * pochhammer ((a + 1) + b) n + b * pochhammer (a + (b + 1)) n =
pochhammer (a + b) (Suc n)"
by (simp add: pochhammer_rec algebra_simps)
finally show ?case ..
qed
text \<open>Contributed by Manuel Eberl, generalised by LCP.
Alternative definition of the binomial coefficient as @{term "\<Prod>i<k. (n - i) / (k - i)"}.\<close>
lemma gbinomial_altdef_of_nat: "a gchoose k = (\<Prod>i = 0..<k. (a - of_nat i) / of_nat (k - i) :: 'a)"
for k :: nat and a :: "'a::field_char_0"
by (simp add: prod_dividef gbinomial_prod_rev fact_prod_rev)
lemma gbinomial_ge_n_over_k_pow_k:
fixes k :: nat
and a :: "'a::linordered_field"
assumes "of_nat k \<le> a"
shows "(a / of_nat k :: 'a) ^ k \<le> a gchoose k"
proof -
have x: "0 \<le> a"
using assms of_nat_0_le_iff order_trans by blast
have "(a / of_nat k :: 'a) ^ k = (\<Prod>i = 0..<k. a / of_nat k :: 'a)"
by simp
also have "\<dots> \<le> a gchoose k" (* FIXME *)
unfolding gbinomial_altdef_of_nat
apply (safe intro!: prod_mono)
apply simp_all
prefer 2
subgoal premises for i
proof -
from assms have "a * of_nat i \<ge> of_nat (i * k)"
by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult)
then have "a * of_nat k - a * of_nat i \<le> a * of_nat k - of_nat (i * k)"
by arith
then have "a * of_nat (k - i) \<le> (a - of_nat i) * of_nat k"
using \<open>i < k\<close> by (simp add: algebra_simps zero_less_mult_iff of_nat_diff)
then have "a * of_nat (k - i) \<le> (a - of_nat i) * (of_nat k :: 'a)"
by (simp only: of_nat_mult[symmetric] of_nat_le_iff)
with assms show ?thesis
using \<open>i < k\<close> by (simp add: field_simps)
qed
apply (simp add: x zero_le_divide_iff)
done
finally show ?thesis .
qed
lemma gbinomial_negated_upper: "(a gchoose k) = (-1) ^ k * ((of_nat k - a - 1) gchoose k)"
by (simp add: gbinomial_pochhammer pochhammer_minus algebra_simps)
lemma gbinomial_minus: "((-a) gchoose k) = (-1) ^ k * ((a + of_nat k - 1) gchoose k)"
by (subst gbinomial_negated_upper) (simp add: add_ac)
lemma Suc_times_gbinomial: "of_nat (Suc k) * ((a + 1) gchoose (Suc k)) = (a + 1) * (a gchoose k)"
proof (cases k)
case 0
then show ?thesis by simp
next
case (Suc b)
then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0..Suc b. a + (1 - of_nat i)) / fact (b + 2)"
by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
also have "(\<Prod>i = 0..Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)"
by (simp add: prod.atLeast0_atMost_Suc_shift)
also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)"
by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
finally show ?thesis by (simp add: Suc field_simps del: of_nat_Suc)
qed
lemma gbinomial_factors: "((a + 1) gchoose (Suc k)) = (a + 1) / of_nat (Suc k) * (a gchoose k)"
proof (cases k)
case 0
then show ?thesis by simp
next
case (Suc b)
then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) / fact (b + 2)"
by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost)
also have "(\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)"
by (simp add: prod.atLeast0_atMost_Suc_shift)
also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)"
by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost atLeast0AtMost)
finally show ?thesis
by (simp add: Suc)
qed
lemma gbinomial_rec: "((a + 1) gchoose (Suc k)) = (a gchoose k) * ((a + 1) / of_nat (Suc k))"
using gbinomial_mult_1[of a k]
by (subst gbinomial_Suc_Suc) (simp add: field_simps del: of_nat_Suc, simp add: algebra_simps)
lemma gbinomial_of_nat_symmetric: "k \<le> n \<Longrightarrow> (of_nat n) gchoose k = (of_nat n) gchoose (n - k)"
using binomial_symmetric[of k n] by (simp add: binomial_gbinomial [symmetric])
text \<open>The absorption identity (equation 5.5 @{cite \<open>p.~157\<close> GKP_CM}):
\[
{r \choose k} = \frac{r}{k}{r - 1 \choose k - 1},\quad \textnormal{integer } k \neq 0.
\]\<close>
lemma gbinomial_absorption': "k > 0 \<Longrightarrow> a gchoose k = (a / of_nat k) * (a - 1 gchoose (k - 1))"
using gbinomial_rec[of "a - 1" "k - 1"]
by (simp_all add: gbinomial_rec field_simps del: of_nat_Suc)
text \<open>The absorption identity is written in the following form to avoid
division by $k$ (the lower index) and therefore remove the $k \neq 0$
restriction @{cite \<open>p.~157\<close> GKP_CM}:
\[
k{r \choose k} = r{r - 1 \choose k - 1}, \quad \textnormal{integer } k.
\]\<close>
lemma gbinomial_absorption: "of_nat (Suc k) * (a gchoose Suc k) = a * ((a - 1) gchoose k)"
using gbinomial_absorption'[of "Suc k" a] by (simp add: field_simps del: of_nat_Suc)
text \<open>The absorption identity for natural number binomial coefficients:\<close>
lemma binomial_absorption: "Suc k * (n choose Suc k) = n * ((n - 1) choose k)"
by (cases n) (simp_all add: binomial_eq_0 Suc_times_binomial del: binomial_Suc_Suc mult_Suc)
text \<open>The absorption companion identity for natural number coefficients,
following the proof by GKP @{cite \<open>p.~157\<close> GKP_CM}:\<close>
lemma binomial_absorb_comp: "(n - k) * (n choose k) = n * ((n - 1) choose k)"
(is "?lhs = ?rhs")
proof (cases "n \<le> k")
case True
then show ?thesis by auto
next
case False
then have "?rhs = Suc ((n - 1) - k) * (n choose Suc ((n - 1) - k))"
using binomial_symmetric[of k "n - 1"] binomial_absorption[of "(n - 1) - k" n]
by simp
also have "Suc ((n - 1) - k) = n - k"
using False by simp
also have "n choose \<dots> = n choose k"
using False by (intro binomial_symmetric [symmetric]) simp_all
finally show ?thesis ..
qed
text \<open>The generalised absorption companion identity:\<close>
lemma gbinomial_absorb_comp: "(a - of_nat k) * (a gchoose k) = a * ((a - 1) gchoose k)"
using pochhammer_absorb_comp[of a k] by (simp add: gbinomial_pochhammer)
lemma gbinomial_addition_formula:
"a gchoose (Suc k) = ((a - 1) gchoose (Suc k)) + ((a - 1) gchoose k)"
using gbinomial_Suc_Suc[of "a - 1" k] by (simp add: algebra_simps)
lemma binomial_addition_formula:
"0 < n \<Longrightarrow> n choose (Suc k) = ((n - 1) choose (Suc k)) + ((n - 1) choose k)"
by (subst choose_reduce_nat) simp_all
text \<open>
Equation 5.9 of the reference material @{cite \<open>p.~159\<close> GKP_CM} is a useful
summation formula, operating on both indices:
\[
\sum\limits_{k \leq n}{r + k \choose k} = {r + n + 1 \choose n},
\quad \textnormal{integer } n.
\]
\<close>
lemma gbinomial_parallel_sum: "(\<Sum>k\<le>n. (a + of_nat k) gchoose k) = (a + of_nat n + 1) gchoose n"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc m)
then show ?case
using gbinomial_Suc_Suc[of "(a + of_nat m + 1)" m]
by (simp add: add_ac)
qed
subsubsection \<open>Summation on the upper index\<close>
text \<open>
Another summation formula is equation 5.10 of the reference material @{cite \<open>p.~160\<close> GKP_CM},
aptly named \emph{summation on the upper index}:\[\sum_{0 \leq k \leq n} {k \choose m} =
{n + 1 \choose m + 1}, \quad \textnormal{integers } m, n \geq 0.\]
\<close>
lemma gbinomial_sum_up_index:
"(\<Sum>j = 0..n. (of_nat j gchoose k) :: 'a::field_char_0) = (of_nat n + 1) gchoose (k + 1)"
proof (induct n)
case 0
show ?case
using gbinomial_Suc_Suc[of 0 k]
by (cases k) auto
next
case (Suc n)
then show ?case
using gbinomial_Suc_Suc[of "of_nat (Suc n) :: 'a" k]
by (simp add: add_ac)
qed
lemma gbinomial_index_swap:
"((-1) ^ k) * ((- (of_nat n) - 1) gchoose k) = ((-1) ^ n) * ((- (of_nat k) - 1) gchoose n)"
(is "?lhs = ?rhs")
proof -
have "?lhs = (of_nat (k + n) gchoose k)"
by (subst gbinomial_negated_upper) (simp add: power_mult_distrib [symmetric])
also have "\<dots> = (of_nat (k + n) gchoose n)"
by (subst gbinomial_of_nat_symmetric) simp_all
also have "\<dots> = ?rhs"
by (subst gbinomial_negated_upper) simp
finally show ?thesis .
qed
lemma gbinomial_sum_lower_neg: "(\<Sum>k\<le>m. (a gchoose k) * (- 1) ^ k) = (- 1) ^ m * (a - 1 gchoose m)"
(is "?lhs = ?rhs")
proof -
have "?lhs = (\<Sum>k\<le>m. -(a + 1) + of_nat k gchoose k)"
by (intro sum.cong[OF refl]) (subst gbinomial_negated_upper, simp add: power_mult_distrib)
also have "\<dots> = - a + of_nat m gchoose m"
by (subst gbinomial_parallel_sum) simp
also have "\<dots> = ?rhs"
by (subst gbinomial_negated_upper) (simp add: power_mult_distrib)
finally show ?thesis .
qed
lemma gbinomial_partial_row_sum:
"(\<Sum>k\<le>m. (a gchoose k) * ((a / 2) - of_nat k)) = ((of_nat m + 1)/2) * (a gchoose (m + 1))"
proof (induct m)
case 0
then show ?case by simp
next
case (Suc mm)
then have "(\<Sum>k\<le>Suc mm. (a gchoose k) * (a / 2 - of_nat k)) =
(a - of_nat (Suc mm)) * (a gchoose Suc mm) / 2"
by (simp add: field_simps)
also have "\<dots> = a * (a - 1 gchoose Suc mm) / 2"
by (subst gbinomial_absorb_comp) (rule refl)
also have "\<dots> = (of_nat (Suc mm) + 1) / 2 * (a gchoose (Suc mm + 1))"
by (subst gbinomial_absorption [symmetric]) simp
finally show ?case .
qed
lemma sum_bounds_lt_plus1: "(\<Sum>k<mm. f (Suc k)) = (\<Sum>k=1..mm. f k)"
by (induct mm) simp_all
lemma gbinomial_partial_sum_poly:
"(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) =
(\<Sum>k\<le>m. (-a gchoose k) * (-x)^k * (x + y)^(m-k))"
(is "?lhs m = ?rhs m")
proof (induction m)
case 0
then show ?case by simp
next
case (Suc mm)
define G where "G i k = (of_nat i + a gchoose k) * x^k * y^(i - k)" for i k
define S where "S = ?lhs"
have SG_def: "S = (\<lambda>i. (\<Sum>k\<le>i. (G i k)))"
unfolding S_def G_def ..
have "S (Suc mm) = G (Suc mm) 0 + (\<Sum>k=Suc 0..Suc mm. G (Suc mm) k)"
using SG_def by (simp add: sum_head_Suc atLeast0AtMost [symmetric])
also have "(\<Sum>k=Suc 0..Suc mm. G (Suc mm) k) = (\<Sum>k=0..mm. G (Suc mm) (Suc k))"
by (subst sum_shift_bounds_cl_Suc_ivl) simp
also have "\<dots> = (\<Sum>k=0..mm. ((of_nat mm + a gchoose (Suc k)) +
(of_nat mm + a gchoose k)) * x^(Suc k) * y^(mm - k))"
unfolding G_def by (subst gbinomial_addition_formula) simp
also have "\<dots> = (\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) +
(\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k))"
by (subst sum.distrib [symmetric]) (simp add: algebra_simps)
also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) =
(\<Sum>k<Suc mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k))"
by (simp only: atLeast0AtMost lessThan_Suc_atMost)
also have "\<dots> = (\<Sum>k<mm. (of_nat mm + a gchoose Suc k) * x^(Suc k) * y^(mm-k)) +
(of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)"
(is "_ = ?A + ?B")
by (subst sum_lessThan_Suc) simp
also have "?A = (\<Sum>k=1..mm. (of_nat mm + a gchoose k) * x^k * y^(mm - k + 1))"
proof (subst sum_bounds_lt_plus1 [symmetric], intro sum.cong[OF refl], clarify)
fix k
assume "k < mm"
then have "mm - k = mm - Suc k + 1"
by linarith
then show "(of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - k) =
(of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - Suc k + 1)"
by (simp only:)
qed
also have "\<dots> + ?B = y * (\<Sum>k=1..mm. (G mm k)) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)"
unfolding G_def by (subst sum_distrib_left) (simp add: algebra_simps)
also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k)) = x * (S mm)"
unfolding S_def by (subst sum_distrib_left) (simp add: atLeast0AtMost algebra_simps)
also have "(G (Suc mm) 0) = y * (G mm 0)"
by (simp add: G_def)
finally have "S (Suc mm) =
y * (G mm 0 + (\<Sum>k=1..mm. (G mm k))) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm) + x * (S mm)"
by (simp add: ring_distribs)
also have "G mm 0 + (\<Sum>k=1..mm. (G mm k)) = S mm"
by (simp add: sum_head_Suc[symmetric] SG_def atLeast0AtMost)
finally have "S (Suc mm) = (x + y) * (S mm) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)"
by (simp add: algebra_simps)
also have "(of_nat mm + a gchoose (Suc mm)) = (-1) ^ (Suc mm) * (- a gchoose (Suc mm))"
by (subst gbinomial_negated_upper) simp
also have "(-1) ^ Suc mm * (- a gchoose Suc mm) * x ^ Suc mm =
(- a gchoose (Suc mm)) * (-x) ^ Suc mm"
by (simp add: power_minus[of x])
also have "(x + y) * S mm + \<dots> = (x + y) * ?rhs mm + (- a gchoose (Suc mm)) * (- x)^Suc mm"
unfolding S_def by (subst Suc.IH) simp
also have "(x + y) * ?rhs mm = (\<Sum>n\<le>mm. ((- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n)))"
by (subst sum_distrib_left, rule sum.cong) (simp_all add: Suc_diff_le)
also have "\<dots> + (-a gchoose (Suc mm)) * (-x)^Suc mm =
(\<Sum>n\<le>Suc mm. (- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n))"
by simp
finally show ?case
by (simp only: S_def)
qed
lemma gbinomial_partial_sum_poly_xpos:
"(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) =
(\<Sum>k\<le>m. (of_nat k + a - 1 gchoose k) * x^k * (x + y)^(m-k))"
apply (subst gbinomial_partial_sum_poly)
apply (subst gbinomial_negated_upper)
apply (intro sum.cong, rule refl)
apply (simp add: power_mult_distrib [symmetric])
done
lemma binomial_r_part_sum: "(\<Sum>k\<le>m. (2 * m + 1 choose k)) = 2 ^ (2 * m)"
proof -
have "2 * 2^(2*m) = (\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k))"
using choose_row_sum[where n="2 * m + 1"] by (simp add: atMost_atLeast0)
also have "(\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k)) =
(\<Sum>k = 0..m. (2 * m + 1 choose k)) +
(\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k))"
using sum_ub_add_nat[of 0 m "\<lambda>k. 2 * m + 1 choose k" "m+1"]
by (simp add: mult_2)
also have "(\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k)) =
(\<Sum>k = 0..m. (2 * m + 1 choose (k + (m + 1))))"
by (subst sum_shift_bounds_cl_nat_ivl [symmetric]) (simp add: mult_2)
also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose (m - k)))"
by (intro sum.cong[OF refl], subst binomial_symmetric) simp_all
also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose k))"
using sum.atLeastAtMost_rev [of "\<lambda>k. 2 * m + 1 choose (m - k)" 0 m]
by simp
also have "\<dots> + \<dots> = 2 * \<dots>"
by simp
finally show ?thesis
by (subst (asm) mult_cancel1) (simp add: atLeast0AtMost)
qed
lemma gbinomial_r_part_sum: "(\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k)) = 2 ^ (2 * m)"
(is "?lhs = ?rhs")
proof -
have "?lhs = of_nat (\<Sum>k\<le>m. (2 * m + 1) choose k)"
by (simp add: binomial_gbinomial add_ac)
also have "\<dots> = of_nat (2 ^ (2 * m))"
by (subst binomial_r_part_sum) (rule refl)
finally show ?thesis by simp
qed
lemma gbinomial_sum_nat_pow2:
"(\<Sum>k\<le>m. (of_nat (m + k) gchoose k :: 'a::field_char_0) / 2 ^ k) = 2 ^ m"
(is "?lhs = ?rhs")
proof -
have "2 ^ m * 2 ^ m = (2 ^ (2*m) :: 'a)"
by (induct m) simp_all
also have "\<dots> = (\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k))"
using gbinomial_r_part_sum ..
also have "\<dots> = (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) * 2 ^ (m - k))"
using gbinomial_partial_sum_poly_xpos[where x="1" and y="1" and a="of_nat m + 1" and m="m"]
by (simp add: add_ac)
also have "\<dots> = 2 ^ m * (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) / 2 ^ k)"
by (subst sum_distrib_left) (simp add: algebra_simps power_diff)
finally show ?thesis
by (subst (asm) mult_left_cancel) simp_all
qed
lemma gbinomial_trinomial_revision:
assumes "k \<le> m"
shows "(a gchoose m) * (of_nat m gchoose k) = (a gchoose k) * (a - of_nat k gchoose (m - k))"
proof -
have "(a gchoose m) * (of_nat m gchoose k) = (a gchoose m) * fact m / (fact k * fact (m - k))"
using assms by (simp add: binomial_gbinomial [symmetric] binomial_fact)
also have "\<dots> = (a gchoose k) * (a - of_nat k gchoose (m - k))"
using assms by (simp add: gbinomial_pochhammer power_diff pochhammer_product)
finally show ?thesis .
qed
text \<open>Versions of the theorems above for the natural-number version of "choose"\<close>
lemma binomial_altdef_of_nat:
"k \<le> n \<Longrightarrow> of_nat (n choose k) = (\<Prod>i = 0..<k. of_nat (n - i) / of_nat (k - i) :: 'a)"
for n k :: nat and x :: "'a::field_char_0"
by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff)
lemma binomial_ge_n_over_k_pow_k: "k \<le> n \<Longrightarrow> (of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)"
for k n :: nat and x :: "'a::linordered_field"
by (simp add: gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff)
lemma binomial_le_pow:
assumes "r \<le> n"
shows "n choose r \<le> n ^ r"
proof -
have "n choose r \<le> fact n div fact (n - r)"
using assms by (subst binomial_fact_lemma[symmetric]) auto
with fact_div_fact_le_pow [OF assms] show ?thesis
by auto
qed
lemma binomial_altdef_nat: "k \<le> n \<Longrightarrow> n choose k = fact n div (fact k * fact (n - k))"
for k n :: nat
by (subst binomial_fact_lemma [symmetric]) auto
lemma choose_dvd:
"k \<le> n \<Longrightarrow> fact k * fact (n - k) dvd (fact n :: 'a::linordered_semidom)"
unfolding dvd_def
apply (rule exI [where x="of_nat (n choose k)"])
using binomial_fact_lemma [of k n, THEN arg_cong [where f = of_nat and 'b='a]]
apply auto
done
lemma fact_fact_dvd_fact:
"fact k * fact n dvd (fact (k + n) :: 'a::linordered_semidom)"
by (metis add.commute add_diff_cancel_left' choose_dvd le_add2)
lemma choose_mult_lemma:
"((m + r + k) choose (m + k)) * ((m + k) choose k) = ((m + r + k) choose k) * ((m + r) choose m)"
(is "?lhs = _")
proof -
have "?lhs =
fact (m + r + k) div (fact (m + k) * fact (m + r - m)) * (fact (m + k) div (fact k * fact m))"
by (simp add: binomial_altdef_nat)
also have "\<dots> = fact (m + r + k) div (fact r * (fact k * fact m))"
apply (subst div_mult_div_if_dvd)
apply (auto simp: algebra_simps fact_fact_dvd_fact)
apply (metis add.assoc add.commute fact_fact_dvd_fact)
done
also have "\<dots> = (fact (m + r + k) * fact (m + r)) div (fact r * (fact k * fact m) * fact (m + r))"
apply (subst div_mult_div_if_dvd [symmetric])
apply (auto simp add: algebra_simps)
apply (metis fact_fact_dvd_fact dvd_trans nat_mult_dvd_cancel_disj)
done
also have "\<dots> =
(fact (m + r + k) div (fact k * fact (m + r)) * (fact (m + r) div (fact r * fact m)))"
apply (subst div_mult_div_if_dvd)
apply (auto simp: fact_fact_dvd_fact algebra_simps)
done
finally show ?thesis
by (simp add: binomial_altdef_nat mult.commute)
qed
text \<open>The "Subset of a Subset" identity.\<close>
lemma choose_mult:
"k \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> (n choose m) * (m choose k) = (n choose k) * ((n - k) choose (m - k))"
using choose_mult_lemma [of "m-k" "n-m" k] by simp
subsection \<open>More on Binomial Coefficients\<close>
lemma choose_one: "n choose 1 = n" for n :: nat
by simp
lemma card_UNION:
assumes "finite A"
and "\<forall>k \<in> A. finite k"
shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"
(is "?lhs = ?rhs")
proof -
have "?rhs = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * (\<Sum>_\<in>\<Inter>I. 1))"
by simp
also have "\<dots> = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (\<Sum>_\<in>\<Inter>I. (- 1) ^ (card I + 1)))"
(is "_ = nat ?rhs")
by (subst sum_distrib_left) simp
also have "?rhs = (\<Sum>(I, _)\<in>Sigma {I. I \<subseteq> A \<and> I \<noteq> {}} Inter. (- 1) ^ (card I + 1))"
using assms by (subst sum.Sigma) auto
also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:UNIV. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
by (rule sum.reindex_cong [where l = "\<lambda>(x, y). (y, x)"]) (auto intro: inj_onI simp add: split_beta)
also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:\<Union>A. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
using assms
by (auto intro!: sum.mono_neutral_cong_right finite_SigmaI2 intro: finite_subset[where B="\<Union>A"])
also have "\<dots> = (\<Sum>x\<in>\<Union>A. (\<Sum>I|I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I. (- 1) ^ (card I + 1)))"
using assms by (subst sum.Sigma) auto
also have "\<dots> = (\<Sum>_\<in>\<Union>A. 1)" (is "sum ?lhs _ = _")
proof (rule sum.cong[OF refl])
fix x
assume x: "x \<in> \<Union>A"
define K where "K = {X \<in> A. x \<in> X}"
with \<open>finite A\<close> have K: "finite K"
by auto
let ?I = "\<lambda>i. {I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I}"
have "inj_on snd (SIGMA i:{1..card A}. ?I i)"
using assms by (auto intro!: inj_onI)
moreover have [symmetric]: "snd ` (SIGMA i:{1..card A}. ?I i) = {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}"
using assms
by (auto intro!: rev_image_eqI[where x="(card a, a)" for a]
simp add: card_gt_0_iff[folded Suc_le_eq]
dest: finite_subset intro: card_mono)
ultimately have "?lhs x = (\<Sum>(i, I)\<in>(SIGMA i:{1..card A}. ?I i). (- 1) ^ (i + 1))"
by (rule sum.reindex_cong [where l = snd]) fastforce
also have "\<dots> = (\<Sum>i=1..card A. (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. (- 1) ^ (i + 1)))"
using assms by (subst sum.Sigma) auto
also have "\<dots> = (\<Sum>i=1..card A. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1))"
by (subst sum_distrib_left) simp
also have "\<dots> = (\<Sum>i=1..card K. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> K \<and> card I = i. 1))"
(is "_ = ?rhs")
proof (rule sum.mono_neutral_cong_right[rule_format])
show "finite {1..card A}"
by simp
show "{1..card K} \<subseteq> {1..card A}"
using \<open>finite A\<close> by (auto simp add: K_def intro: card_mono)
next
fix i
assume "i \<in> {1..card A} - {1..card K}"
then have i: "i \<le> card A" "card K < i"
by auto
have "{I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I} = {I. I \<subseteq> K \<and> card I = i}"
by (auto simp add: K_def)
also have "\<dots> = {}"
using \<open>finite A\<close> i by (auto simp add: K_def dest: card_mono[rotated 1])
finally show "(- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1 :: int) = 0"
by (simp only:) simp
next
fix i
have "(\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1) = (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)"
(is "?lhs = ?rhs")
by (rule sum.cong) (auto simp add: K_def)
then show "(- 1) ^ (i + 1) * ?lhs = (- 1) ^ (i + 1) * ?rhs"
by simp
qed
also have "{I. I \<subseteq> K \<and> card I = 0} = {{}}"
using assms by (auto simp add: card_eq_0_iff K_def dest: finite_subset)
then have "?rhs = (\<Sum>i = 0..card K. (- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)) + 1"
by (subst (2) sum_head_Suc) simp_all
also have "\<dots> = (\<Sum>i = 0..card K. (- 1) * ((- 1) ^ i * int (card K choose i))) + 1"
using K by (subst n_subsets[symmetric]) simp_all
also have "\<dots> = - (\<Sum>i = 0..card K. (- 1) ^ i * int (card K choose i)) + 1"
by (subst sum_distrib_left[symmetric]) simp
also have "\<dots> = - ((-1 + 1) ^ card K) + 1"
by (subst binomial_ring) (simp add: ac_simps atMost_atLeast0)
also have "\<dots> = 1"
using x K by (auto simp add: K_def card_gt_0_iff)
finally show "?lhs x = 1" .
qed
also have "nat \<dots> = card (\<Union>A)"
by simp
finally show ?thesis ..
qed
text \<open>The number of nat lists of length \<open>m\<close> summing to \<open>N\<close> is @{term "(N + m - 1) choose N"}:\<close>
lemma card_length_sum_list_rec:
assumes "m \<ge> 1"
shows "card {l::nat list. length l = m \<and> sum_list l = N} =
card {l. length l = (m - 1) \<and> sum_list l = N} +
card {l. length l = m \<and> sum_list l + 1 = N}"
(is "card ?C = card ?A + card ?B")
proof -
let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}"
let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}"
let ?f = "\<lambda>l. 0 # l"
let ?g = "\<lambda>l. (hd l + 1) # tl l"
have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x :: nat and xs
by simp
have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list"
by (auto simp add: neq_Nil_conv)
have f: "bij_betw ?f ?A ?A'"
apply (rule bij_betw_byWitness[where f' = tl])
using assms
apply (auto simp: 2 length_0_conv[symmetric] 1 simp del: length_0_conv)
done
have 3: "xs \<noteq> [] \<Longrightarrow> hd xs + (sum_list xs - hd xs) = sum_list xs" for xs :: "nat list"
by (metis 1 sum_list_simps(2) 2)
have g: "bij_betw ?g ?B ?B'"
apply (rule bij_betw_byWitness[where f' = "\<lambda>l. (hd l - 1) # tl l"])
using assms
by (auto simp: 2 length_0_conv[symmetric] intro!: 3
simp del: length_greater_0_conv length_0_conv)
have fin: "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}" for M N :: nat
using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto
have fin_A: "finite ?A" using fin[of _ "N+1"]
by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"])
(auto simp: member_le_sum_list less_Suc_eq_le)
have fin_B: "finite ?B"
by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"])
(auto simp: member_le_sum_list less_Suc_eq_le fin)
have uni: "?C = ?A' \<union> ?B'"
by auto
have disj: "?A' \<inter> ?B' = {}" by blast
have "card ?C = card(?A' \<union> ?B')"
using uni by simp
also have "\<dots> = card ?A + card ?B"
using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g]
bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B
by presburger
finally show ?thesis .
qed
lemma card_length_sum_list: "card {l::nat list. size l = m \<and> sum_list l = N} = (N + m - 1) choose N"
\<comment> \<open>by Holden Lee, tidied by Tobias Nipkow\<close>
proof (cases m)
case 0
then show ?thesis
by (cases N) (auto cong: conj_cong)
next
case (Suc m')
have m: "m \<ge> 1"
by (simp add: Suc)
then show ?thesis
proof (induct "N + m - 1" arbitrary: N m)
case 0 \<comment> \<open>In the base case, the only solution is [0].\<close>
have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}"
by (auto simp: length_Suc_conv)
have "m = 1 \<and> N = 0"
using 0 by linarith
then show ?case
by simp
next
case (Suc k)
have c1: "card {l::nat list. size l = (m - 1) \<and> sum_list l = N} = (N + (m - 1) - 1) choose N"
proof (cases "m = 1")
case True
with Suc.hyps have "N \<ge> 1"
by auto
with True show ?thesis
by (simp add: binomial_eq_0)
next
case False
then show ?thesis
using Suc by fastforce
qed
from Suc have c2: "card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
(if N > 0 then ((N - 1) + m - 1) choose (N - 1) else 0)"
proof -
have *: "n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" for m n
by arith
from Suc have "N > 0 \<Longrightarrow>
card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
((N - 1) + m - 1) choose (N - 1)"
by (simp add: *)
then show ?thesis
by auto
qed
from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> sum_list l = N} +
card {l::nat list. size l = m \<and> sum_list l + 1 = N}) = (N + m - 1) choose N"
by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def)
then show ?case
using card_length_sum_list_rec[OF Suc.prems] by auto
qed
qed
lemma card_disjoint_shuffle:
assumes "set xs \<inter> set ys = {}"
shows "card (shuffle xs ys) = (length xs + length ys) choose length xs"
using assms
proof (induction xs ys rule: shuffle.induct)
case (3 x xs y ys)
have "shuffle (x # xs) (y # ys) = (#) x ` shuffle xs (y # ys) \<union> (#) y ` shuffle (x # xs) ys"
by (rule shuffle.simps)
also have "card \<dots> = card ((#) x ` shuffle xs (y # ys)) + card ((#) y ` shuffle (x # xs) ys)"
by (rule card_Un_disjoint) (insert "3.prems", auto)
also have "card ((#) x ` shuffle xs (y # ys)) = card (shuffle xs (y # ys))"
by (rule card_image) auto
also have "\<dots> = (length xs + length (y # ys)) choose length xs"
using "3.prems" by (intro "3.IH") auto
also have "card ((#) y ` shuffle (x # xs) ys) = card (shuffle (x # xs) ys)"
by (rule card_image) auto
also have "\<dots> = (length (x # xs) + length ys) choose length (x # xs)"
using "3.prems" by (intro "3.IH") auto
also have "length xs + length (y # ys) choose length xs + \<dots> =
(length (x # xs) + length (y # ys)) choose length (x # xs)" by simp
finally show ?case .
qed auto
lemma Suc_times_binomial_add: "Suc a * (Suc (a + b) choose Suc a) = Suc b * (Suc (a + b) choose a)"
\<comment> \<open>by Lukas Bulwahn\<close>
proof -
have dvd: "Suc a * (fact a * fact b) dvd fact (Suc (a + b))" for a b
using fact_fact_dvd_fact[of "Suc a" "b", where 'a=nat]
by (simp only: fact_Suc add_Suc[symmetric] of_nat_id mult.assoc)
have "Suc a * (fact (Suc (a + b)) div (Suc a * fact a * fact b)) =
Suc a * fact (Suc (a + b)) div (Suc a * (fact a * fact b))"
by (subst div_mult_swap[symmetric]; simp only: mult.assoc dvd)
also have "\<dots> = Suc b * fact (Suc (a + b)) div (Suc b * (fact a * fact b))"
by (simp only: div_mult_mult1)
also have "\<dots> = Suc b * (fact (Suc (a + b)) div (Suc b * (fact a * fact b)))"
using dvd[of b a] by (subst div_mult_swap[symmetric]; simp only: ac_simps dvd)
finally show ?thesis
by (subst (1 2) binomial_altdef_nat)
(simp_all only: ac_simps diff_Suc_Suc Suc_diff_le diff_add_inverse fact_Suc of_nat_id)
qed
subsection \<open>Executable code\<close>
lemma gbinomial_code [code]:
"a gchoose k =
(if k = 0 then 1
else fold_atLeastAtMost_nat (\<lambda>k acc. (a - of_nat k) * acc) 0 (k - 1) 1 / fact k)"
by (cases k)
(simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric]
atLeastLessThanSuc_atLeastAtMost)
lemma binomial_code [code]:
"n choose k =
(if k > n then 0
else if 2 * k > n then n choose (n - k)
else (fold_atLeastAtMost_nat ( * ) (n - k + 1) n 1 div fact k))"
proof -
{
assume "k \<le> n"
then have "{1..n} = {1..n-k} \<union> {n-k+1..n}" by auto
then have "(fact n :: nat) = fact (n-k) * \<Prod>{n-k+1..n}"
by (simp add: prod.union_disjoint fact_prod)
}
then show ?thesis by (auto simp: binomial_altdef_nat mult_ac prod_atLeastAtMost_code)
qed
end