included managing_thread in state of AtpManager:
synchronized termination and check for running managing_thread
(* Title: HOL/Lambda/ListOrder.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1998 TU Muenchen
*)
header {* Lifting an order to lists of elements *}
theory ListOrder imports Main begin
text {*
Lifting an order to lists of elements, relating exactly one
element.
*}
definition
step1 :: "('a => 'a => bool) => 'a list => 'a list => bool" where
"step1 r =
(\<lambda>ys xs. \<exists>us z z' vs. xs = us @ z # vs \<and> r z' z \<and> ys =
us @ z' # vs)"
lemma step1_converse [simp]: "step1 (r^--1) = (step1 r)^--1"
apply (unfold step1_def)
apply (blast intro!: order_antisym)
done
lemma in_step1_converse [iff]: "(step1 (r^--1) x y) = ((step1 r)^--1 x y)"
apply auto
done
lemma not_Nil_step1 [iff]: "\<not> step1 r [] xs"
apply (unfold step1_def)
apply blast
done
lemma not_step1_Nil [iff]: "\<not> step1 r xs []"
apply (unfold step1_def)
apply blast
done
lemma Cons_step1_Cons [iff]:
"(step1 r (y # ys) (x # xs)) =
(r y x \<and> xs = ys \<or> x = y \<and> step1 r ys xs)"
apply (unfold step1_def)
apply (rule iffI)
apply (erule exE)
apply (rename_tac ts)
apply (case_tac ts)
apply fastsimp
apply force
apply (erule disjE)
apply blast
apply (blast intro: Cons_eq_appendI)
done
lemma append_step1I:
"step1 r ys xs \<and> vs = us \<or> ys = xs \<and> step1 r vs us
==> step1 r (ys @ vs) (xs @ us)"
apply (unfold step1_def)
apply auto
apply blast
apply (blast intro: append_eq_appendI)
done
lemma Cons_step1E [elim!]:
assumes "step1 r ys (x # xs)"
and "!!y. ys = y # xs \<Longrightarrow> r y x \<Longrightarrow> R"
and "!!zs. ys = x # zs \<Longrightarrow> step1 r zs xs \<Longrightarrow> R"
shows R
using assms
apply (cases ys)
apply (simp add: step1_def)
apply blast
done
lemma Snoc_step1_SnocD:
"step1 r (ys @ [y]) (xs @ [x])
==> (step1 r ys xs \<and> y = x \<or> ys = xs \<and> r y x)"
apply (unfold step1_def)
apply (clarify del: disjCI)
apply (rename_tac vs)
apply (rule_tac xs = vs in rev_exhaust)
apply force
apply simp
apply blast
done
lemma Cons_acc_step1I [intro!]:
"accp r x ==> accp (step1 r) xs \<Longrightarrow> accp (step1 r) (x # xs)"
apply (induct arbitrary: xs set: accp)
apply (erule thin_rl)
apply (erule accp_induct)
apply (rule accp.accI)
apply blast
done
lemma lists_accD: "listsp (accp r) xs ==> accp (step1 r) xs"
apply (induct set: listsp)
apply (rule accp.accI)
apply simp
apply (rule accp.accI)
apply (fast dest: accp_downward)
done
lemma ex_step1I:
"[| x \<in> set xs; r y x |]
==> \<exists>ys. step1 r ys xs \<and> y \<in> set ys"
apply (unfold step1_def)
apply (drule in_set_conv_decomp [THEN iffD1])
apply force
done
lemma lists_accI: "accp (step1 r) xs ==> listsp (accp r) xs"
apply (induct set: accp)
apply clarify
apply (rule accp.accI)
apply (drule_tac r=r in ex_step1I, assumption)
apply blast
done
end