src/HOL/Complex/ex/Arithmetic_Series_Complex.thy
author wenzelm
Tue, 10 Jun 2008 19:15:16 +0200
changeset 27123 11fcdd5897dd
parent 19469 958d2f2dd8d4
permissions -rw-r--r--
case_tac/induct_tac: use same declarations as cases/induct;

(*  Title:      HOL/Complex/ex/Arithmetic_Series_Complex
    ID:         $Id$
    Author:     Benjamin Porter, 2006
*)


header {* Arithmetic Series for Reals *}

theory Arithmetic_Series_Complex
imports Complex_Main 
begin

lemma arith_series_real:
  "(2::real) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
  of_nat n * (a + (a + of_nat(n - 1)*d))"
proof -
  have
    "((1::real) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat(i)*d) =
    of_nat(n) * (a + (a + of_nat(n - 1)*d))"
    by (rule arith_series_general)
  thus ?thesis by simp
qed

end