(* Title: ZF/coinductive.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Coinductive Definitions for Zermelo-Fraenkel Set Theory
Uses greatest fixedpoints with Quine-inspired products and sums
Sums are used only for mutual recursion;
Products are used only to derive "streamlined" induction rules for relations
*)
structure Gfp =
struct
val oper = Const("gfp", [iT,iT-->iT]--->iT)
val bnd_mono = Const("bnd_mono", [iT,iT-->iT]--->oT)
val bnd_monoI = bnd_monoI
val subs = def_gfp_subset
val Tarski = def_gfp_Tarski
val induct = def_Collect_coinduct
end;
structure Quine_Prod =
struct
val sigma = Const("QSigma", [iT, iT-->iT]--->iT)
val pair = Const("QPair", [iT,iT]--->iT)
val split_const = Const("qsplit", [[iT,iT]--->iT, iT]--->iT)
val fsplit_const = Const("qfsplit", [[iT,iT]--->oT, iT]--->oT)
val pair_iff = QPair_iff
val split_eq = qsplit
val fsplitI = qfsplitI
val fsplitD = qfsplitD
val fsplitE = qfsplitE
end;
structure Quine_Sum =
struct
val sum = Const("op <+>", [iT,iT]--->iT)
val inl = Const("QInl", iT-->iT)
val inr = Const("QInr", iT-->iT)
val elim = Const("qcase", [iT-->iT, iT-->iT, iT]--->iT)
val case_inl = qcase_QInl
val case_inr = qcase_QInr
val inl_iff = QInl_iff
val inr_iff = QInr_iff
val distinct = QInl_QInr_iff
val distinct' = QInr_QInl_iff
end;
signature COINDRULE =
sig
val coinduct : thm
end;
functor CoInductive_Fun (Ind: INDUCTIVE)
: sig include INTR_ELIM COINDRULE end =
struct
structure Intr_elim =
Intr_elim_Fun(structure Ind=Ind and Fp=Gfp and
Pr=Quine_Prod and Su=Quine_Sum);
open Intr_elim
val coinduct = raw_induct
end;