(* ID: $Id$
Author: Claire Quigley
Copyright 2004 University of Cambridge
*)
(******************)
(* complete later *)
(******************)
structure Recon_Transfer =
struct
open Recon_Parse
infixr 8 ++; infixr 7 >>; infixr 6 ||;
(* Versions that include type information *)
(* FIXME rename to str_of_thm *)
fun string_of_thm thm =
setmp show_sorts true (Pretty.str_of o Display.pretty_thm) thm;
(* check separate args in the watcher program for separating strings with a * or ; or something *)
fun clause_strs_to_string [] str = str
| clause_strs_to_string (x::xs) str = clause_strs_to_string xs (str^x^"%")
fun thmvars_to_string [] str = str
| thmvars_to_string (x::xs) str = thmvars_to_string xs (str^x^"%")
fun proofstep_to_string Axiom = "Axiom()"
| proofstep_to_string (Binary ((a,b), (c,d)))=
"Binary(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"
| proofstep_to_string (Factor (a,b,c)) =
"Factor("^(string_of_int a)^","^(string_of_int b)^","^(string_of_int c)^")"
| proofstep_to_string (Para ((a,b), (c,d)))=
"Para(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"
| proofstep_to_string (MRR ((a,b), (c,d))) =
"MRR(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"
(*| proofstep_to_string (Rewrite((a,b),(c,d))) =
"Rewrite(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"*)
fun list_to_string [] liststr = liststr
| list_to_string (x::[]) liststr = liststr^(string_of_int x)
| list_to_string (x::xs) liststr = list_to_string xs (liststr^(string_of_int x)^",")
fun proof_to_string (num,(step,clause_strs, thmvars)) = (string_of_int num)^(proofstep_to_string step)^"["^(clause_strs_to_string clause_strs "")^"]["^(thmvars_to_string thmvars "")^"]"
fun proofs_to_string [] str = str
| proofs_to_string (x::xs) str = let val newstr = proof_to_string x
in
proofs_to_string xs (str^newstr)
end
fun init_proofstep_to_string (num, step, clause_strs) = (string_of_int num)^" "^(proofstep_to_string step)^" "^(clause_strs_to_string clause_strs "")^" "
fun init_proofsteps_to_string [] str = str
| init_proofsteps_to_string (x::xs) str = let val newstr = init_proofstep_to_string x
in
init_proofsteps_to_string xs (str^newstr)
end
(*** get a string representing the Isabelle ordered axioms ***)
fun origAx_to_string (num,(meta,thmvars)) =
let val clause_strs = ReconOrderClauses.get_meta_lits_bracket meta
in
(string_of_int num)^"OrigAxiom()["^
(clause_strs_to_string clause_strs "")^"]["^
(thmvars_to_string thmvars "")^"]"
end
fun origAxs_to_string [] str = str
| origAxs_to_string (x::xs) str = let val newstr = origAx_to_string x
in
origAxs_to_string xs (str^newstr)
end
(*** get a string representing the Isabelle ordered axioms not used in the spass proof***)
fun extraAx_to_string (num, (meta,thmvars)) =
let val clause_strs = ReconOrderClauses.get_meta_lits_bracket meta
in
(string_of_int num)^"ExtraAxiom()["^
(clause_strs_to_string clause_strs "")^"]"^
"["^(thmvars_to_string thmvars "")^"]"
end;
fun extraAxs_to_string [] str = str
| extraAxs_to_string (x::xs) str =
let val newstr = extraAx_to_string x
in
extraAxs_to_string xs (str^newstr)
end;
fun is_axiom ( num:int,Axiom, str) = true
| is_axiom (num, _,_) = false
fun get_init_axioms xs = List.filter (is_axiom) ( xs)
fun get_step_nums [] nums = nums
| get_step_nums (( num:int,Axiom, str)::xs) nums = get_step_nums xs (nums@[num])
exception Noassoc;
fun assoc_snd a [] = raise Noassoc
| assoc_snd a ((x, y)::t) = if a = y then x else assoc_snd a t;
(* change to be something using check_order instead of a = y --> returns true if ASSERTION not raised in checkorder, false otherwise *)
(*fun get_assoc_snds [] xs assocs= assocs
| get_assoc_snds (x::xs) ys assocs = get_assoc_snds xs ys (assocs@[((assoc_snd x ys))])
*)
(*FIX - should this have vars in it? *)
fun there_out_of_order xs ys = (ReconOrderClauses.checkorder xs ys [] ([],[],[]); true)
handle _ => false
fun assoc_out_of_order a [] = raise Noassoc
| assoc_out_of_order a ((b,c)::t) = if there_out_of_order a c then b else assoc_out_of_order a t;
fun get_assoc_snds [] xs assocs= assocs
| get_assoc_snds (x::xs) ys assocs = get_assoc_snds xs ys (assocs@[((assoc_out_of_order x ys))])
fun add_if_not_inlist [] xs newlist = newlist
| add_if_not_inlist (y::ys) xs newlist = if (not (y mem xs)) then
add_if_not_inlist ys xs (y::newlist)
else add_if_not_inlist ys xs (newlist)
(*Flattens a list of list of strings to one string*)
fun onestr ls = String.concat (map String.concat ls);
fun thmstrings [] str = str
| thmstrings (x::xs) str = thmstrings xs (str^(string_of_thm x))
fun is_clasimp_ax clasimp_num n = n <=clasimp_num
fun retrieve_axioms clause_arr [] = []
| retrieve_axioms clause_arr (x::xs) = [Array.sub(clause_arr, x)]@
(retrieve_axioms clause_arr xs)
fun subone x = x - 1
fun numstr [] = ""
| numstr (x::xs) = (string_of_int x)^"%"^(numstr xs)
(* retrieve the axioms that were obtained from the clasimpset *)
fun get_clasimp_cls clause_arr clasimp_num step_nums =
let val realnums = map subone step_nums
val clasimp_nums = List.filter (is_clasimp_ax (clasimp_num - 1)) realnums
(* val axnums = TextIO.openOut(File.platform_path(File.tmp_path (Path.basic "axnums")))
val _ = TextIO.output(axnums,(numstr clasimp_nums))
val _ = TextIO.closeOut(axnums)*)
in
retrieve_axioms clause_arr clasimp_nums
end
(*****************************************************)
(* get names of clasimp axioms used *)
(*****************************************************)
fun get_axiom_names proof_steps thms (clause_arr:(ResClause.clause * thm) Array.array) num_of_clauses =
let
(* not sure why this is necessary again, but seems to be *)
val _ = (print_mode := (Library.gen_rems (op =) (! print_mode, ["xsymbols", "symbols"])))
val axioms = get_init_axioms proof_steps
val step_nums = get_step_nums axioms []
(***********************************************)
(* here need to add the clauses from clause_arr*)
(***********************************************)
val (clasimp_names_cls) = get_clasimp_cls clause_arr num_of_clauses step_nums
val clasimp_names = map (#1 o ResClause.clause_info o #1) clasimp_names_cls
val _ = File.write (File.tmp_path (Path.basic "clasimp_names"))
(concat clasimp_names)
val _ = (print_mode := (["xsymbols", "symbols"] @ ! print_mode))
in
clasimp_names
end
fun get_axiom_names_vamp proofstr thms (clause_arr:(ResClause.clause * thm) Array.array) num_of_clauses =
let
(* not sure why this is necessary again, but seems to be *)
val _ = (print_mode := (Library.gen_rems (op =) (! print_mode, ["xsymbols", "symbols"])))
val step_nums =get_linenums proofstr
(***********************************************)
(* here need to add the clauses from clause_arr*)
(***********************************************)
val (clasimp_names_cls) = get_clasimp_cls clause_arr num_of_clauses step_nums
val clasimp_names = map (#1 o ResClause.clause_info o #1) clasimp_names_cls
val _ = File.write (File.tmp_path (Path.basic "clasimp_names"))
(concat clasimp_names)
val _ = (print_mode := (["xsymbols", "symbols"] @ ! print_mode))
in
clasimp_names
end
(***********************************************)
(* get axioms for reconstruction *)
(***********************************************)
fun numclstr (vars, []) str = str
| numclstr ( vars, ((num, thm)::rest)) str =
let val newstr = str^(string_of_int num)^" "^(string_of_thm thm)^" "
in
numclstr (vars,rest) newstr
end
fun addvars c (a,b) = (a,b,c)
fun get_axioms_used proof_steps thms clause_arr num_of_clauses =
let
val _= (print_mode := (Library.gen_rems (op =) (! print_mode, ["xsymbols", "symbols"])))
val axioms = get_init_axioms proof_steps
val step_nums = get_step_nums axioms []
(***********************************************)
(* here need to add the clauses from clause_arr*)
(***********************************************)
(* val clasimp_names_cls = get_clasimp_cls clause_arr num_of_clauses step_nums
val clasimp_names = map #1 clasimp_names_cls
val clasimp_cls = map #2 clasimp_names_cls
val _ = TextIO.openAppend(File.platform_path(File.tmp_path (Path.basic "clasimp_names"))) val clasimp_namestr = concat clasimp_names
val _ = TextIO.output (outfile,clasimp_namestr)
val _ = TextIO.closeOut outfile
*)
val clauses =(*(clasimp_cls)@*)( make_clauses thms)
val vars = map thm_vars clauses
val distvars = distinct (fold append vars [])
val clause_terms = map prop_of clauses
val clause_frees = List.concat (map term_frees clause_terms)
val frees = map lit_string_with_nums clause_frees;
val distfrees = distinct frees
val metas = map Meson.make_meta_clause clauses
val ax_strs = map #3 axioms
(* literals of -all- axioms, not just those used by spass *)
val meta_strs = map ReconOrderClauses.get_meta_lits metas
val metas_and_strs = ListPair.zip (metas,meta_strs)
val _ = File.write(File.tmp_path (Path.basic "foo_clauses")) (onestr ax_strs)
val _ = File.write(File.tmp_path (Path.basic "foo_metastrs")) (onestr meta_strs)
(* get list of axioms as thms with their variables *)
val ax_metas = get_assoc_snds ax_strs metas_and_strs []
val ax_vars = map thm_vars ax_metas
val ax_with_vars = ListPair.zip (ax_metas,ax_vars)
(* get list of extra axioms as thms with their variables *)
val extra_metas = add_if_not_inlist metas ax_metas []
val extra_vars = map thm_vars extra_metas
val extra_with_vars = if (not (extra_metas = []) )
then ListPair.zip (extra_metas,extra_vars)
else []
(* val _= (print_mode := (Library.gen_rems (op =) (! print_mode, ["xsymbols", "symbols"])))
val _ = TextIO.openOut(File.platform_path(File.tmp_path (Path.basic "foo_metas")))
val _ = TextIO.output (outfile, ((thmstrings ax_metas "")))
val _ = TextIO.closeOut outfile
val foo_metas = File.platform_path(File.tmp_path (Path.basic "foo_metas"))
val foo_metas2 = File.platform_path(File.tmp_path (Path.basic "foo_metas2"))
val execperl = Unix.execute("/usr/bin/perl", ["remchars.pl", " <", foo_metas, " >", foo_metas2])
val infile = TextIO.openIn(File.platform_path(File.tmp_path (Path.basic "foo_metas2")))
val ax_metas_str = TextIO.inputLine (infile)
val _ = TextIO.closeIn infile
val _= (print_mode := (["xsymbols", "symbols"] @ ! print_mode))*)
in
(distfrees,distvars, extra_with_vars,ax_with_vars, (*clasimp_names*)(ListPair.zip (step_nums,ax_metas)))
end;
(*********************************************************************)
(* Pass in spass string of proof and string version of isabelle goal *)
(* Get out reconstruction steps as a string to be sent to Isabelle *)
(*********************************************************************)
fun rules_to_string [] = "NONE"
| rules_to_string xs = "[" ^ space_implode ", " xs ^ "]"
val dummy_tac = PRIMITIVE(fn thm => thm );
(*val proofstr = "1242[0:Inp] || -> equal(const_List_Orev(tconst_fun(tconst_List_Olist(U),tconst_List_Olist(U)),const_List_Olist_ONil),const_List_Olist_ONil)**.\
\1279[0:Inp] || -> equal(const_Nat_Osize(tconst_fun(tconst_List_Olist(U),tconst_nat),const_List_Olist_ONil),const_0)**.\
\1430[0:Inp] || equal(const_Nat_Osize(tconst_fun(tconst_List_Olist(typ__Ha),tconst_nat),const_List_Orev(tconst_fun(tconst_List_Olist(typ__Ha),tconst_List_Olist(typ__Ha)),const_List_Olist_ONil)),const_Nat_Osize(tconst_fun(tconst_List_Olist(typ__Ha),tconst_nat),const_List_Olist_ONil))** -> .\
\1453[0:Rew:1279.0,1430.0,1242.0,1430.0,1279.0,1430.0] || equal(const_0,const_0)* -> .\
\1454[0:Obv:1453.0] || -> .";*)
fun subst_for a b = String.translate (fn c => str (if c=a then b else c));
val remove_linebreaks = subst_for #"\n" #"\t";
val restore_linebreaks = subst_for #"\t" #"\n";
fun spassString_to_lemmaString proofstr thmstring goalstring toParent ppid thms clause_arr num_of_clauses =
let val _ = File.append(File.tmp_path (Path.basic"thmstringfile"))
("thmstring is: "^thmstring^"\n proofstr is: "^proofstr^"\n goalstr is: "^goalstring^" \n num of clauses is: "^(string_of_int num_of_clauses))
(***********************************)
(* parse spass proof into datatype *)
(***********************************)
val tokens = #1(lex proofstr)
val proof_steps1 = parse tokens
val proof_steps = just_change_space proof_steps1
val _ = File.write (File.tmp_path (Path.basic "foo_parse")) ("Did parsing on "^proofstr)
val _ = File.write(File.tmp_path (Path.basic "foo_thmstring_at_parse"))
("Parsing for thmstring: "^thmstring)
(************************************)
(* recreate original subgoal as thm *)
(************************************)
(* get axioms as correctly numbered clauses w.r.t. the Spass proof *)
(* need to get prems_of thm, then get right one of the prems, relating to whichever*)
(* subgoal this is, and turn it into meta_clauses *)
(* should prob add array and table here, so that we can get axioms*)
(* produced from the clasimpset rather than the problem *)
val (axiom_names) = get_axiom_names proof_steps thms clause_arr num_of_clauses
val ax_str = "Rules from clasimpset used in proof found by SPASS: " ^
rules_to_string axiom_names
val _ = File.append(File.tmp_path (Path.basic "reconstrfile"))
("reconstring is: "^ax_str^" "^goalstring)
in
TextIO.output (toParent, ax_str^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, "goalstring: "^goalstring^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, "thmstring: "^thmstring^"\n");
TextIO.flushOut toParent;
Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
(* Attempt to prevent several signals from turning up simultaneously *)
Posix.Process.sleep(Time.fromSeconds 1) ; dummy_tac
end
handle _ =>
let val _ = File.write(File.tmp_path (Path.basic "foo_handler")) "In exception handler"
in
TextIO.output (toParent,"Proof found but parsing failed for resolution proof: "^(remove_linebreaks proofstr)^"\n" );
TextIO.flushOut toParent;
TextIO.output (toParent, (remove_linebreaks thmstring)^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, ( (remove_linebreaks goalstring)^"\n"));
TextIO.flushOut toParent;
Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
(* Attempt to prevent several signals from turning up simultaneously *)
Posix.Process.sleep(Time.fromSeconds 1) ;dummy_tac
end
fun vampString_to_lemmaString proofstr thmstring goalstring toParent ppid thms clause_arr num_of_clauses =
let val _ = File.append(File.tmp_path (Path.basic "thmstringfile"))
(" thmstring is: "^thmstring^"proofstr is: "^proofstr^
"goalstr is: "^goalstring^" num of clauses is: "^
(string_of_int num_of_clauses))
(***********************************)
(* get vampire axiom names *)
(***********************************)
val (axiom_names) = get_axiom_names_vamp proofstr thms clause_arr num_of_clauses
val ax_str = "Rules from clasimpset used in proof found by Vampire: " ^
rules_to_string axiom_names
in
File.append(File.tmp_path (Path.basic "reconstrfile")) ("reconstring is: "^ax_str^" "^goalstring);
TextIO.output (toParent, ax_str^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, "goalstring: "^goalstring^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, "thmstring: "^thmstring^"\n");
TextIO.flushOut toParent;
Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
(* Attempt to prevent several signals from turning up simultaneously *)
Posix.Process.sleep(Time.fromSeconds 1) ; dummy_tac
end
handle _ =>
let val _ = File.write(File.tmp_path (Path.basic "foo_handler")) "In exception handler"
in
TextIO.output (toParent,"Proof found by Vampire but translation failed for resolution proof: "^(remove_linebreaks proofstr) );
TextIO.flushOut toParent;
TextIO.output (toParent, thmstring^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, goalstring^"\n");
TextIO.flushOut toParent;
Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
(* Attempt to prevent several signals from turning up simultaneously *)
Posix.Process.sleep(Time.fromSeconds 1) ;dummy_tac
end;
(* val proofstr = "1582[0:Inp] || -> v_P*.\
\1583[0:Inp] || v_P* -> .\
\1584[0:MRR:1583.0,1582.0] || -> ."; *)
fun spassString_to_reconString proofstr thmstring goalstring toParent ppid thms clause_arr num_of_clauses =
let val _ = File.write(File.tmp_path (Path.basic "thmstringfile"))
(" thmstring is: "^thmstring^"proofstr is: "^proofstr)
val tokens = #1(lex proofstr)
(***********************************)
(* parse spass proof into datatype *)
(***********************************)
val proof_steps1 = parse tokens
val proof_steps = just_change_space proof_steps1
val _ = File.write (File.tmp_path (Path.basic "foo_parse"))
("Did parsing on "^proofstr)
val _ = File.write (File.tmp_path (Path.basic "foo_thmstring_at_parse"))
("Parsing for thmstring: "^thmstring)
(************************************)
(* recreate original subgoal as thm *)
(************************************)
(* get axioms as correctly numbered clauses w.r.t. the Spass proof *)
(* need to get prems_of thm, then get right one of the prems, relating to whichever*)
(* subgoal this is, and turn it into meta_clauses *)
(* should prob add array and table here, so that we can get axioms*)
(* produced from the clasimpset rather than the problem *)
val (frees,vars,extra_with_vars ,ax_with_vars,numcls) = get_axioms_used proof_steps thms clause_arr num_of_clauses
(*val numcls_string = numclstr ( vars, numcls) ""*)
val _ = File.write (File.tmp_path (Path.basic "foo_axiom")) "got axioms"
(************************************)
(* translate proof *)
(************************************)
val _ = File.write (File.tmp_path (Path.basic "foo_steps"))
("about to translate proof, steps: "
^(init_proofsteps_to_string proof_steps ""))
val (newthm,proof) = translate_proof numcls proof_steps vars
val _ = File.write (File.tmp_path (Path.basic "foo_steps2"))
("translated proof, steps: "^(init_proofsteps_to_string proof_steps ""))
(***************************************************)
(* transfer necessary steps as strings to Isabelle *)
(***************************************************)
(* turn the proof into a string *)
val reconProofStr = proofs_to_string proof ""
(* do the bit for the Isabelle ordered axioms at the top *)
val ax_nums = map #1 numcls
val ax_strs = map ReconOrderClauses.get_meta_lits_bracket (map #2 numcls)
val numcls_strs = ListPair.zip (ax_nums,ax_strs)
val num_cls_vars = map (addvars vars) numcls_strs;
val reconIsaAxStr = origAxs_to_string (ListPair.zip (ax_nums,ax_with_vars)) ""
val extra_nums = if (not (extra_with_vars = [])) then (1 upto (length extra_with_vars))
else []
val reconExtraAxStr = extraAxs_to_string ( ListPair.zip (extra_nums,extra_with_vars)) ""
val frees_str = "["^(thmvars_to_string frees "")^"]"
val _ = File.write (File.tmp_path (Path.basic "reconstringfile"))
(frees_str^reconExtraAxStr^reconIsaAxStr^reconProofStr)
val reconstr = (frees_str^reconExtraAxStr^reconIsaAxStr^reconProofStr)
in
TextIO.output (toParent, reconstr^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, thmstring^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, goalstring^"\n");
TextIO.flushOut toParent;
Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
(* Attempt to prevent several signals from turning up simultaneously *)
Posix.Process.sleep(Time.fromSeconds 1) ; dummy_tac
end
handle _ =>
let val _ = File.write(File.tmp_path (Path.basic "foo_handler")) "In exception handler"
in
TextIO.output (toParent,"Proof found but translation failed for resolution proof:"^(remove_linebreaks proofstr) ^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, thmstring^"\n");
TextIO.flushOut toParent;
TextIO.output (toParent, goalstring^"\n");
TextIO.flushOut toParent;
Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
(* Attempt to prevent several signals from turning up simultaneously *)
Posix.Process.sleep(Time.fromSeconds 1) ;dummy_tac
end
(**********************************************************************************)
(* At other end, want to turn back into datatype so can apply reconstruct_proof. *)
(* This will be done by the signal handler *)
(**********************************************************************************)
(* Parse in the string version of the proof steps for reconstruction *)
(* Isar format: cl1 [BINARY 0 cl2 0];cl1 [PARAMOD 0 cl2 0]; cl1 [DEMOD 0 cl2];cl1 [FACTOR 1 2];*)
val term_numstep =
(number ++ (a (Other ",")) ++ number) >> (fn (a, (_, c)) => (a, c))
val extraaxiomstep = (a (Word "ExtraAxiom"))++ (a (Other "(")) ++(a (Other ")"))
>> (fn (_) => ExtraAxiom)
val origaxiomstep = (a (Word "OrigAxiom"))++ (a (Other "(")) ++(a (Other ")"))
>> (fn (_) => OrigAxiom)
val axiomstep = (a (Word "Axiom"))++ (a (Other "(")) ++(a (Other ")"))
>> (fn (_) => Axiom)
val binarystep = (a (Word "Binary")) ++ (a (Other "(")) ++ (a (Other "("))
++ term_numstep ++ (a (Other ")")) ++ (a (Other ","))
++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
>> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Binary (c,e))
val parastep = (a (Word "Para")) ++ (a (Other "(")) ++ (a (Other "("))
++ term_numstep ++ (a (Other ")")) ++ (a (Other ","))
++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
>> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Para(c, e))
val mrrstep = (a (Word "MRR")) ++ (a (Other "(")) ++ (a (Other "("))
++ term_numstep ++ (a (Other ")")) ++ (a (Other ","))
++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
>> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => MRR(c, e))
val factorstep = (a (Word "Factor")) ++ (a (Other "("))
++ number ++ (a (Other ","))
++ number ++ (a (Other ","))
++ number ++ (a (Other ")"))
>> (fn (_, (_, (c, (_, (e,(_,(f,_))))))) => Factor (c,e,f))
(*val rewritestep = (a (Word "Rewrite")) ++ (a (Other "(")) ++ (a (Other "("))
++ term_numstep ++ (a (Other ")")) ++ (a (Other ","))
++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
>> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Rewrite (c,e))*)
val obviousstep = (a (Word "Obvious")) ++ (a (Other "("))
++ term_numstep ++ (a (Other ")"))
>> (fn (_, (_, (c,_))) => Obvious (c))
val methodstep = extraaxiomstep || origaxiomstep || axiomstep ||binarystep || factorstep|| parastep || mrrstep || (*rewritestep ||*) obviousstep
val number_list_step =
( number ++ many ((a (Other ",") ++ number)>> #2))
>> (fn (a,b) => (a::b))
val numberlist_step = a (Other "[") ++ a (Other "]")
>>(fn (_,_) => ([]:int list))
|| a (Other "[") ++ number_list_step ++ a (Other "]")
>>(fn (_,(a,_)) => a)
(** change this to allow P (x U) *)
fun arglist_step input = ( word ++ many word >> (fn (a, b) => (a^" "^(implode_with_space b)))
||word >> (fn (a) => (a)))input
fun literal_step input = (word ++ a (Other "(") ++ arglist_step ++ a (Other ")")
>>(fn (a, (b, (c,d))) => (a^" ("^(c)^")"))
|| arglist_step >> (fn (a) => (a)))input
(* fun term_step input = (a (Other "~") ++ arglist_step ++ a (Other "%")>> (fn (a,(b,c)) => ("~ "^b))
|| arglist_step ++ a (Other "%")>> (fn (a,b) => a ))input
*)
fun term_step input = (a (Other "~") ++ literal_step ++ a (Other "%")>> (fn (a,(b,c)) => ("~ "^b))
|| literal_step ++ a (Other "%")>> (fn (a,b) => a ))input
val term_list_step =
( term_step ++ many ( term_step))
>> (fn (a,b) => (a::b))
val term_lists_step = a (Other "[") ++ a (Other "]")
>>(fn (_,_) => ([]:string list))
|| a (Other "[") ++ term_list_step ++ a (Other "]")
>>(fn (_,(a,_)) => a)
fun anytoken_step input = (word>> (fn (a) => a) ) input
handle NOPARSE_WORD => (number>> (fn (a) => string_of_int a) ) input
handle NOPARSE_NUMBER => (other_char >> (fn(a) => a)) input
fun goalstring_step input= (anytoken_step ++ many (anytoken_step )
>> (fn (a,b) => (a^" "^(implode b)))) input
val linestep = number ++ methodstep ++ term_lists_step ++ term_lists_step
>> (fn (a, (b, (c,d))) => (a,(b,c,d)))
val lines_step = many linestep
val alllines_step = (term_lists_step ++ lines_step ) ++ finished >> #1
val parse_step = #1 o alllines_step
(*
val reconstr ="[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]%(EX x::'a::type. ALL y::'a::type. (P::'a::type => bool) x = P y) -->(EX x::'a::type. P x) = (ALL y::'a::type. P y)"
*)
(************************************************************)
(* Construct an Isar style proof from a list of proof steps *)
(************************************************************)
(* want to assume all axioms, then do haves for the other clauses*)
(* then show for the last step *)
(* replace ~ by not here *)
fun change_nots [] = []
| change_nots (x::xs) = if x = "~"
then
["\\", "<", "n", "o", "t", ">"]@(change_nots xs)
else (x::(change_nots xs))
(*
fun clstrs_to_string [] str = str
| clstrs_to_string (x::[]) str = str^x
| clstrs_to_string (x::xs) str = clstrs_to_string xs (str^(x^"; "))
*)
fun clstrs_to_string [] str = implode (change_nots (explode str))
| clstrs_to_string (x::[]) str = implode (change_nots (explode (str^x)))
| clstrs_to_string (x::xs) str = implode (change_nots (explode (clstrs_to_string xs (str^(x^"; ")))))
fun thmvars_to_quantstring [] str = str
| thmvars_to_quantstring (x::[]) str =str^x^". "
| thmvars_to_quantstring (x::xs) str = thmvars_to_quantstring xs (str^(x^" "))
fun clause_strs_to_isar clstrs [] = "\"\\<lbrakk>"^(clstrs_to_string clstrs "")^"\\<rbrakk> \\<Longrightarrow> False\""
| clause_strs_to_isar clstrs thmvars = "\"\\<And>"^(thmvars_to_quantstring thmvars "")^"\\<lbrakk>"^(clstrs_to_string clstrs "")^"\\<rbrakk> \\<Longrightarrow> False\""
fun frees_to_string [] str = implode (change_nots (explode str))
| frees_to_string (x::[]) str = implode (change_nots (explode (str^x)))
| frees_to_string (x::xs) str = implode (change_nots (explode (frees_to_string xs (str^(x^" ")))))
fun frees_to_isar_str [] = ""
| frees_to_isar_str clstrs = (frees_to_string clstrs "")
(***********************************************************************)
(* functions for producing assumptions for the Isabelle ordered axioms *)
(***********************************************************************)
(*val str = "[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]";
num, rule, clausestrs, vars*)
(* assume the extra clauses - not used in Spass proof *)
fun is_extraaxiom_step ( num:int,(ExtraAxiom, str, tstr)) = true
| is_extraaxiom_step (num, _) = false
fun get_extraaxioms xs = List.filter (is_extraaxiom_step) ( xs)
fun assume_isar_extraaxiom [] str = str
| assume_isar_extraaxiom ((numb,(step, clstr, thmvars))::xs) str = assume_isar_extraaxiom xs (str^"and cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstr thmvars)^"\n " )
fun assume_isar_extraaxioms [] = ""
|assume_isar_extraaxioms ((numb,(step, clstrs, thmstrs))::xs) = let val str = "assume cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstrs thmstrs)^"\n"
in
assume_isar_extraaxiom xs str
end
(* assume the Isabelle ordered clauses *)
fun is_origaxiom_step ( num:int,(OrigAxiom, str, tstr)) = true
| is_origaxiom_step (num, _) = false
fun get_origaxioms xs = List.filter (is_origaxiom_step) ( xs)
fun assume_isar_origaxiom [] str = str
| assume_isar_origaxiom ((numb,(step, clstr, thmvars))::xs) str = assume_isar_origaxiom xs (str^"and cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstr thmvars)^"\n " )
fun assume_isar_origaxioms ((numb,(step, clstrs, thmstrs))::xs) = let val str = "assume cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstrs thmstrs)^"\n"
in
assume_isar_origaxiom xs str
end
fun is_axiom_step ( num:int,(Axiom, str, tstr)) = true
| is_axiom_step (num, _) = false
fun get_axioms xs = List.filter (is_axiom_step) ( xs)
fun have_isar_axiomline (numb,(step, clstrs, thmstrs))="have cl"^(string_of_int numb)^": "^(clause_strs_to_isar clstrs thmstrs)^"\n"
fun by_isar_axiomline (numb,(step, clstrs, thmstrs))="by (rule cl"^ (string_of_int numb)^"') \n"
fun isar_axiomline (numb, (step, clstrs, thmstrs)) = (have_isar_axiomline (numb,(step,clstrs, thmstrs )))^( by_isar_axiomline(numb,(step,clstrs, thmstrs )) )
fun isar_axiomlines [] str = str
| isar_axiomlines (x::xs) str = isar_axiomlines xs (str^(isar_axiomline x))
fun have_isar_line (numb,(step, clstrs, thmstrs))="have cl"^(string_of_int numb)^": "^(clause_strs_to_isar clstrs thmstrs)^"\n"
(*FIX: ask Larry to add and mrr attribute *)
fun by_isar_line ((Binary ((a,b), (c,d)))) =
"by(rule cl"^
(string_of_int a)^" [binary "^(string_of_int b)^" cl"^
(string_of_int c)^" "^(string_of_int d)^"])\n"
|by_isar_line ((MRR ((a,b), (c,d)))) =
"by(rule cl"^
(string_of_int a)^" [binary "^(string_of_int b)^" cl"^
(string_of_int c)^" "^(string_of_int d)^"])\n"
| by_isar_line ( (Para ((a,b), (c,d)))) =
"by (rule cl"^
(string_of_int a)^" [paramod "^(string_of_int b)^" cl"^
(string_of_int c)^" "^(string_of_int d)^"])\n"
| by_isar_line ((Factor ((a,b,c)))) =
"by (rule cl"^(string_of_int a)^" [factor "^(string_of_int b)^" "^
(string_of_int c)^" ])\n"
(*| by_isar_line ( (Rewrite ((a,b),(c,d)))) =
"by (rule cl"^(string_of_int a)^" [demod "^(string_of_int b)^" "^
(string_of_int c)^" "^(string_of_int d)^" ])\n"*)
| by_isar_line ( (Obvious ((a,b)))) =
"by (rule cl"^(string_of_int a)^" [obvious "^(string_of_int b)^" ])\n"
fun isar_line (numb, (step, clstrs, thmstrs)) = (have_isar_line (numb,(step,clstrs, thmstrs )))^( by_isar_line step)
fun isar_lines [] str = str
| isar_lines (x::xs) str = isar_lines xs (str^(isar_line x))
fun last_isar_line (numb,( step, clstrs,thmstrs)) = "show \"False\"\n"^(by_isar_line step)
fun to_isar_proof (frees, xs, goalstring) =
let val extraaxioms = get_extraaxioms xs
val extraax_num = length extraaxioms
val origaxioms_and_steps = Library.drop (extraax_num, xs)
val origaxioms = get_origaxioms origaxioms_and_steps
val origax_num = length origaxioms
val axioms_and_steps = Library.drop (origax_num + extraax_num, xs)
val axioms = get_axioms axioms_and_steps
val steps = Library.drop (origax_num, axioms_and_steps)
val firststeps = ReconOrderClauses.butlast steps
val laststep = ReconOrderClauses.last steps
val goalstring = implode(ReconOrderClauses.butlast(explode goalstring))
val isar_proof =
("show \""^goalstring^"\"\n")^
("proof (rule ccontr,skolemize, make_clauses) \n")^
("fix "^(frees_to_isar_str frees)^"\n")^
(assume_isar_extraaxioms extraaxioms)^
(assume_isar_origaxioms origaxioms)^
(isar_axiomlines axioms "")^
(isar_lines firststeps "")^
(last_isar_line laststep)^
("qed")
val _ = File.write (File.tmp_path (Path.basic "isar_proof_file")) isar_proof
in
isar_proof
end;
(* get fix vars from axioms - all Frees *)
(* check each clause for meta-vars and /\ over them at each step*)
(*******************************************************)
(* This assumes the thm list "numcls" is still there *)
(* In reality, should probably label it with an *)
(* ID number identifying the subgoal. This could *)
(* be passed over to the watcher, e.g. numcls25 *)
(*******************************************************)
(* val str = "[S%x%P%R%Q%]1ExtraAxiom()[~ Q U%~ R U%][U%]2ExtraAxiom()[~ Q U%~ P U%][U%]3ExtraAxiom()[Q U%R U%][U%]1OrigAxiom()[S x%][]2OrigAxiom()[P U%R U%][U%]6OrigAxiom()[~ S U%~ P U%][U%]7OrigAxiom()[~ S U%~ R U%][U%]1Axiom()[S x%][]2Axiom()[R U%P U%][U%]6Axiom()[~ P U%~ S U%][U%]7Axiom()[~ R U%~ S U%][U%]8Binary((6,1),(1,0))[~ P x%][]9Binary((7,1),(1,0))[~ R x%][]19Binary((9,0),(2,0))[P x%][]25Binary((8,0),(19,0))[][]";
val str = "[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]";
val reconstr = "[P%Q%x%xa%]1OrigAxiom()[~ P U%][U%]3OrigAxiom()[Q U%][U%]5OrigAxiom()[P (x U)%~ Q (xa U)%][U%]9Binary((7,0),(3,0))[][]7Binary((1,0),(5,0))[~ Q (xa U)%][U%]5Axiom()[P (x U)%~ Q (xa U)%][U%]3Axiom()[Q U%][U%]1Axiom()[~ P U%][U%](ALL xb::'a::type. (~ (P::'a::type => bool) ((x::'a::type => 'a::type) xb) | (Q::'a::type => bool) ((xa::'a::type => 'a::type) xb)) & P xb & ~ Q xb)";
val reconstr = "[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]";
val thmstring = " (ALL xa::'a::type. (~ (P::'a::type => bool) (x::'a::type) | P xa) & (~ P xa | P x)) & (((P::'a::type => bool) (xa::'a::type) | (ALL x::'a::type. P x)) &((ALL x::'a::type. ~ P x) | ~ P (xb::'a::type)))";
*)
fun apply_res_thm str goalstring = let val tokens = #1 (lex str);
val _ = File.append (File.tmp_path (Path.basic "applyres"))
("str is: "^str^" goalstr is: "^goalstring^"\n")
val (frees,recon_steps) = parse_step tokens
val isar_str = to_isar_proof (frees, recon_steps, goalstring)
val foo = TextIO.openOut (File.platform_path(File.tmp_path (Path.basic "foobar")));
in
TextIO.output(foo,(isar_str));TextIO.closeOut foo;Pretty.writeln(Pretty.str isar_str); ()
end
(* val reconstr = reconstr^"[P%]51Axiom()[~P%]52Axiom[P%][]53MRR((52,0),(51,0))[][]";
*)
end;