(* Title: Tools/Code/code_target.ML
Author: Florian Haftmann, TU Muenchen
Generic infrastructure for target language data.
*)
signature CODE_TARGET =
sig
val cert_tyco: theory -> string -> string
val read_tyco: theory -> string -> string
val read_const_exprs: theory -> string list -> string list
val export_code_for: theory -> Path.T option -> string -> int option -> string -> Token.T list
-> Code_Thingol.naming -> Code_Thingol.program -> string list -> unit
val produce_code_for: theory -> string -> int option -> string -> Token.T list
-> Code_Thingol.naming -> Code_Thingol.program -> string list -> string * string option list
val present_code_for: theory -> string -> int option -> string -> Token.T list
-> Code_Thingol.naming -> Code_Thingol.program -> string list * string list -> string
val check_code_for: theory -> string -> bool -> Token.T list
-> Code_Thingol.naming -> Code_Thingol.program -> string list -> unit
val export_code: theory -> string list
-> (((string * string) * Path.T option) * Token.T list) list -> unit
val produce_code: theory -> string list
-> string -> int option -> string -> Token.T list -> string * string option list
val present_code: theory -> string list -> (Code_Thingol.naming -> string list)
-> string -> int option -> string -> Token.T list -> string
val check_code: theory -> string list
-> ((string * bool) * Token.T list) list -> unit
val evaluator: theory -> string -> Code_Thingol.naming -> Code_Thingol.program
-> string list -> ((string * class list) list * Code_Thingol.itype) * Code_Thingol.iterm
-> string * string
type serializer
type literals = Code_Printer.literals
val add_target: string * { serializer: serializer, literals: literals,
check: { env_var: string, make_destination: Path.T -> Path.T,
make_command: string -> string -> string } } -> theory -> theory
val extend_target: string *
(string * (Code_Thingol.naming -> Code_Thingol.program -> Code_Thingol.program))
-> theory -> theory
val assert_target: theory -> string -> string
val the_literals: theory -> string -> literals
type serialization
val parse_args: 'a parser -> Token.T list -> 'a
val serialization: (int -> Path.T option -> 'a -> unit)
-> (string list -> int -> 'a -> string * (string -> string option))
-> 'a -> serialization
val set_default_code_width: int -> theory -> theory
val allow_abort: string -> theory -> theory
type tyco_syntax = Code_Printer.tyco_syntax
type const_syntax = Code_Printer.const_syntax
val add_class_syntax: string -> class -> string option -> theory -> theory
val add_instance_syntax: string -> class * string -> unit option -> theory -> theory
val add_tyco_syntax: string -> string -> tyco_syntax option -> theory -> theory
val add_const_syntax: string -> string -> const_syntax option -> theory -> theory
val add_reserved: string -> string -> theory -> theory
val add_include: string -> string * (string * string list) option -> theory -> theory
val codegen_tool: string (*theory name*) -> string (*export_code expr*) -> unit
end;
structure Code_Target : CODE_TARGET =
struct
open Basic_Code_Thingol;
type literals = Code_Printer.literals;
type tyco_syntax = Code_Printer.tyco_syntax;
type const_syntax = Code_Printer.const_syntax;
(** abstract nonsense **)
datatype destination = Export of Path.T option | Produce | Present of string list;
type serialization = int -> destination -> (string * (string -> string option)) option;
fun serialization output _ content width (Export some_path) =
(output width some_path content; NONE)
| serialization _ string content width Produce =
string [] width content |> SOME
| serialization _ string content width (Present stmt_names) =
string stmt_names width content
|> apfst (Pretty.output (SOME width) o Pretty.str)
|> SOME;
fun export some_path f = (f (Export some_path); ());
fun produce f = the (f Produce);
fun present stmt_names f = fst (the (f (Present stmt_names)));
(** theory data **)
datatype symbol_syntax_data = Symbol_Syntax_Data of {
class: string Symtab.table,
instance: unit Symreltab.table,
tyco: Code_Printer.tyco_syntax Symtab.table,
const: Code_Printer.const_syntax Symtab.table
};
fun make_symbol_syntax_data ((class, instance), (tyco, const)) =
Symbol_Syntax_Data { class = class, instance = instance, tyco = tyco, const = const };
fun map_symbol_syntax_data f (Symbol_Syntax_Data { class, instance, tyco, const }) =
make_symbol_syntax_data (f ((class, instance), (tyco, const)));
fun merge_symbol_syntax_data
(Symbol_Syntax_Data { class = class1, instance = instance1, tyco = tyco1, const = const1 },
Symbol_Syntax_Data { class = class2, instance = instance2, tyco = tyco2, const = const2 }) =
make_symbol_syntax_data (
(Symtab.join (K snd) (class1, class2),
Symreltab.join (K snd) (instance1, instance2)),
(Symtab.join (K snd) (tyco1, tyco2),
Symtab.join (K snd) (const1, const2))
);
type serializer = Token.T list
-> {
labelled_name: string -> string,
reserved_syms: string list,
includes: (string * Pretty.T) list,
module_alias: string -> string option,
class_syntax: string -> string option,
tyco_syntax: string -> Code_Printer.tyco_syntax option,
const_syntax: string -> Code_Printer.activated_const_syntax option }
-> Code_Thingol.program
-> serialization;
datatype description = Fundamental of { serializer: serializer,
literals: literals,
check: { env_var: string, make_destination: Path.T -> Path.T,
make_command: string -> string -> string } }
| Extension of string *
(Code_Thingol.naming -> Code_Thingol.program -> Code_Thingol.program);
datatype target = Target of {
serial: serial,
description: description,
reserved: string list,
includes: (Pretty.T * string list) Symtab.table,
module_alias: string Symtab.table,
symbol_syntax: symbol_syntax_data
};
fun make_target ((serial, description), ((reserved, includes), (module_alias, symbol_syntax))) =
Target { serial = serial, description = description, reserved = reserved,
includes = includes, module_alias = module_alias, symbol_syntax = symbol_syntax };
fun map_target f ( Target { serial, description, reserved, includes, module_alias, symbol_syntax } ) =
make_target (f ((serial, description), ((reserved, includes), (module_alias, symbol_syntax))));
fun merge_target strict target (Target { serial = serial1, description = description,
reserved = reserved1, includes = includes1,
module_alias = module_alias1, symbol_syntax = symbol_syntax1 },
Target { serial = serial2, description = _,
reserved = reserved2, includes = includes2,
module_alias = module_alias2, symbol_syntax = symbol_syntax2 }) =
if serial1 = serial2 orelse not strict then
make_target ((serial1, description),
((merge (op =) (reserved1, reserved2), Symtab.join (K snd) (includes1, includes2)),
(Symtab.join (K snd) (module_alias1, module_alias2),
merge_symbol_syntax_data (symbol_syntax1, symbol_syntax2))
))
else
error ("Incompatible targets: " ^ quote target);
fun the_description (Target { description, ... }) = description;
fun the_reserved (Target { reserved, ... }) = reserved;
fun the_includes (Target { includes, ... }) = includes;
fun the_module_alias (Target { module_alias , ... }) = module_alias;
fun the_symbol_syntax (Target { symbol_syntax = Symbol_Syntax_Data x, ... }) = x;
structure Targets = Theory_Data
(
type T = (target Symtab.table * string list) * int;
val empty = ((Symtab.empty, []), 80);
val extend = I;
fun merge (((target1, exc1), width1), ((target2, exc2), width2)) : T =
((Symtab.join (merge_target true) (target1, target2),
Library.merge (op =) (exc1, exc2)), Int.max (width1, width2));
);
val abort_allowed = snd o fst o Targets.get;
fun assert_target thy target = if Symtab.defined ((fst o fst) (Targets.get thy)) target
then target
else error ("Unknown code target language: " ^ quote target);
fun put_target (target, seri) thy =
let
val lookup_target = Symtab.lookup ((fst o fst) (Targets.get thy));
val _ = case seri
of Extension (super, _) => if is_some (lookup_target super) then ()
else error ("Unknown code target language: " ^ quote super)
| _ => ();
val overwriting = case (Option.map the_description o lookup_target) target
of NONE => false
| SOME (Extension _) => true
| SOME (Fundamental _) => (case seri
of Extension _ => error ("Will not overwrite existing target " ^ quote target)
| _ => true);
val _ = if overwriting
then warning ("Overwriting existing target " ^ quote target)
else ();
in
thy
|> (Targets.map o apfst o apfst o Symtab.update)
(target, make_target ((serial (), seri), (([], Symtab.empty),
(Symtab.empty, make_symbol_syntax_data ((Symtab.empty, Symreltab.empty),
(Symtab.empty, Symtab.empty))))))
end;
fun add_target (target, seri) = put_target (target, Fundamental seri);
fun extend_target (target, (super, modify)) =
put_target (target, Extension (super, modify));
fun map_target_data target f thy =
let
val _ = assert_target thy target;
in
thy
|> (Targets.map o apfst o apfst o Symtab.map_entry target o map_target) f
end;
fun map_reserved target =
map_target_data target o apsnd o apfst o apfst;
fun map_includes target =
map_target_data target o apsnd o apfst o apsnd;
fun map_module_alias target =
map_target_data target o apsnd o apsnd o apfst;
fun map_symbol_syntax target =
map_target_data target o apsnd o apsnd o apsnd o map_symbol_syntax_data;
fun set_default_code_width k = (Targets.map o apsnd) (K k);
(** serializer usage **)
(* montage *)
fun the_fundamental thy =
let
val ((targets, _), _) = Targets.get thy;
fun fundamental target = case Symtab.lookup targets target
of SOME data => (case the_description data
of Fundamental data => data
| Extension (super, _) => fundamental super)
| NONE => error ("Unknown code target language: " ^ quote target);
in fundamental end;
fun the_literals thy = #literals o the_fundamental thy;
fun collapse_hierarchy thy =
let
val ((targets, _), _) = Targets.get thy;
fun collapse target =
let
val data = case Symtab.lookup targets target
of SOME data => data
| NONE => error ("Unknown code target language: " ^ quote target);
in case the_description data
of Fundamental _ => (K I, data)
| Extension (super, modify) => let
val (modify', data') = collapse super
in (fn naming => modify' naming #> modify naming, merge_target false target (data', data)) end
end;
in collapse end;
local
fun activate_target thy target =
let
val ((targets, abortable), default_width) = Targets.get thy;
val (modify, data) = collapse_hierarchy thy target;
in (default_width, abortable, data, modify) end;
fun activate_syntax lookup_name src_tab = Symtab.empty
|> fold_map (fn thing_identifier => fn tab => case lookup_name thing_identifier
of SOME name => (SOME name,
Symtab.update_new (name, the (Symtab.lookup src_tab thing_identifier)) tab)
| NONE => (NONE, tab)) (Symtab.keys src_tab)
|>> map_filter I;
fun activate_const_syntax thy literals src_tab naming = (Symtab.empty, naming)
|> fold_map (fn c => fn (tab, naming) =>
case Code_Thingol.lookup_const naming c
of SOME name => let
val (syn, naming') = Code_Printer.activate_const_syntax thy
literals c (the (Symtab.lookup src_tab c)) naming
in (SOME name, (Symtab.update_new (name, syn) tab, naming')) end
| NONE => (NONE, (tab, naming))) (Symtab.keys src_tab)
|>> map_filter I;
fun activate_symbol_syntax thy literals naming
class_syntax instance_syntax tyco_syntax const_syntax =
let
val (names_class, class_syntax') =
activate_syntax (Code_Thingol.lookup_class naming) class_syntax;
val names_inst = map_filter (Code_Thingol.lookup_instance naming)
(Symreltab.keys instance_syntax);
val (names_tyco, tyco_syntax') =
activate_syntax (Code_Thingol.lookup_tyco naming) tyco_syntax;
val (names_const, (const_syntax', _)) =
activate_const_syntax thy literals const_syntax naming;
in
(names_class @ names_inst @ names_tyco @ names_const,
(class_syntax', tyco_syntax', const_syntax'))
end;
fun project_program thy abortable names_hidden names1 program2 =
let
val names2 = subtract (op =) names_hidden names1;
val program3 = Graph.subgraph (not o member (op =) names_hidden) program2;
val names4 = Graph.all_succs program3 names2;
val empty_funs = filter_out (member (op =) abortable)
(Code_Thingol.empty_funs program3);
val _ = if null empty_funs then () else error ("No code equations for "
^ commas (map (Sign.extern_const thy) empty_funs));
val program4 = Graph.subgraph (member (op =) names4) program3;
in (names4, program4) end;
fun prepare_serializer thy abortable serializer literals reserved all_includes
module_alias proto_class_syntax proto_instance_syntax proto_tyco_syntax proto_const_syntax
module_name args naming proto_program names =
let
val (names_hidden, (class_syntax, tyco_syntax, const_syntax)) =
activate_symbol_syntax thy literals naming
proto_class_syntax proto_instance_syntax proto_tyco_syntax proto_const_syntax;
val (names_all, program) = project_program thy abortable names_hidden names proto_program;
fun select_include (name, (content, cs)) =
if null cs orelse exists (fn c => case Code_Thingol.lookup_const naming c
of SOME name => member (op =) names_all name
| NONE => false) cs
then SOME (name, content) else NONE;
val includes = map_filter select_include (Symtab.dest all_includes);
in
(serializer args {
labelled_name = Code_Thingol.labelled_name thy proto_program,
reserved_syms = reserved,
includes = includes,
module_alias = if module_name = "" then Symtab.lookup module_alias else K (SOME module_name),
class_syntax = Symtab.lookup class_syntax,
tyco_syntax = Symtab.lookup tyco_syntax,
const_syntax = Symtab.lookup const_syntax },
program)
end;
fun mount_serializer thy target some_width module_name args naming program names =
let
val (default_width, abortable, data, modify) = activate_target thy target;
val serializer = case the_description data
of Fundamental seri => #serializer seri;
val reserved = the_reserved data;
val module_alias = the_module_alias data
val { class, instance, tyco, const } = the_symbol_syntax data;
val literals = the_literals thy target;
val (prepared_serializer, prepared_program) = prepare_serializer thy
abortable serializer literals reserved (the_includes data) module_alias
class instance tyco const module_name args
naming (modify naming program) names
val width = the_default default_width some_width;
in (fn program => prepared_serializer program width, prepared_program) end;
fun invoke_serializer thy target some_width module_name args naming program names =
let
val (mounted_serializer, prepared_program) = mount_serializer thy
target some_width module_name args naming program names;
in mounted_serializer prepared_program end;
fun assert_module_name "" = error ("Empty module name not allowed.")
| assert_module_name module_name = module_name;
in
fun export_code_for thy some_path target some_width module_name args =
export some_path ooo invoke_serializer thy target some_width module_name args;
fun produce_code_for thy target some_width module_name args =
let
val serializer = invoke_serializer thy target some_width (assert_module_name module_name) args;
in fn naming => fn program => fn names =>
produce (serializer naming program names) |> apsnd (fn deresolve => map deresolve names)
end;
fun present_code_for thy target some_width module_name args =
let
val serializer = invoke_serializer thy target some_width (assert_module_name module_name) args;
in fn naming => fn program => fn (names, selects) =>
present selects (serializer naming program names)
end;
fun check_code_for thy target strict args naming program names_cs =
let
val module_name = "Code";
val { env_var, make_destination, make_command } =
(#check o the_fundamental thy) target;
val env_param = getenv env_var;
fun ext_check env_param p =
let
val destination = make_destination p;
val _ = export (SOME destination) (invoke_serializer thy target (SOME 80)
module_name args naming program names_cs);
val cmd = make_command env_param module_name;
in if bash ("cd " ^ File.shell_path p ^ " && " ^ cmd ^ " 2>&1") <> 0
then error ("Code check failed for " ^ target ^ ": " ^ cmd)
else ()
end;
in if env_param = ""
then if strict
then error (env_var ^ " not set; cannot check code for " ^ target)
else warning (env_var ^ " not set; skipped checking code for " ^ target)
else Isabelle_System.with_tmp_dir "Code_Test" (ext_check env_param)
end;
fun evaluation mounted_serializer prepared_program consts ((vs, ty), t) =
let
val _ = if Code_Thingol.contains_dict_var t then
error "Term to be evaluated contains free dictionaries" else ();
val v' = Name.variant (map fst vs) "a";
val vs' = (v', []) :: vs;
val ty' = Code_Thingol.fun_tyco `%% [ITyVar v', ty];
val value_name = "Value.value.value"
val program = prepared_program
|> Graph.new_node (value_name,
Code_Thingol.Fun (Term.dummy_patternN, (((vs', ty'), [(([IVar NONE], t), (NONE, true))]), NONE)))
|> fold (curry (perhaps o try o Graph.add_edge) value_name) consts;
val (program_code, deresolve) = produce (mounted_serializer program);
val value_name' = the (deresolve value_name);
in (program_code, value_name') end;
fun evaluator thy target naming program consts =
let
val (mounted_serializer, prepared_program) = mount_serializer thy
target NONE "Code" [] naming program consts;
in evaluation mounted_serializer prepared_program consts end;
end; (* local *)
(* code generation *)
fun transitivly_non_empty_funs thy naming program =
let
val cs = subtract (op =) (abort_allowed thy) (Code_Thingol.empty_funs program);
val names = map_filter (Code_Thingol.lookup_const naming) cs;
in subtract (op =) (Graph.all_preds program names) (Graph.keys program) end;
fun read_const_exprs thy cs =
let
val (cs1, cs2) = Code_Thingol.read_const_exprs thy cs;
val (names2, (naming, program)) = Code_Thingol.consts_program thy true cs2;
val names3 = transitivly_non_empty_funs thy naming program;
val cs3 = map_filter (fn (c, name) =>
if member (op =) names3 name then SOME c else NONE) (cs2 ~~ names2);
in union (op =) cs3 cs1 end;
fun prep_destination "" = NONE
| prep_destination "-" = NONE
| prep_destination s = SOME (Path.explode s);
fun export_code thy cs seris =
let
val (names_cs, (naming, program)) = Code_Thingol.consts_program thy false cs;
val _ = map (fn (((target, module_name), some_path), args) =>
export_code_for thy some_path target NONE module_name args naming program names_cs) seris;
in () end;
fun export_code_cmd raw_cs seris thy = export_code thy (read_const_exprs thy raw_cs)
((map o apfst o apsnd) prep_destination seris);
fun produce_code thy cs target some_width some_module_name args =
let
val (names_cs, (naming, program)) = Code_Thingol.consts_program thy false cs;
in produce_code_for thy target some_width some_module_name args naming program names_cs end;
fun present_code thy cs names_stmt target some_width some_module_name args =
let
val (names_cs, (naming, program)) = Code_Thingol.consts_program thy false cs;
in present_code_for thy target some_width some_module_name args naming program (names_cs, names_stmt naming) end;
fun check_code thy cs seris =
let
val (names_cs, (naming, program)) = Code_Thingol.consts_program thy false cs;
val _ = map (fn ((target, strict), args) =>
check_code_for thy target strict args naming program names_cs) seris;
in () end;
fun check_code_cmd raw_cs seris thy = check_code thy (read_const_exprs thy raw_cs) seris;
local
val parse_const_terms = Scan.repeat1 Args.term
>> (fn ts => fn thy => map (Code.check_const thy) ts);
fun parse_names category parse internalize lookup =
Scan.lift (Args.parens (Args.$$$ category)) |-- Scan.repeat1 parse
>> (fn xs => fn thy => fn naming => map_filter (lookup naming o internalize thy) xs);
val parse_consts = parse_names "consts" Args.term
Code.check_const Code_Thingol.lookup_const ;
val parse_types = parse_names "types" (Scan.lift Args.name)
Sign.intern_type Code_Thingol.lookup_tyco;
val parse_classes = parse_names "classes" (Scan.lift Args.name)
Sign.intern_class Code_Thingol.lookup_class;
val parse_instances = parse_names "instances" (Scan.lift (Args.name --| Args.$$$ "::" -- Args.name))
(fn thy => fn (raw_tyco, raw_class) => (Sign.intern_class thy raw_class, Sign.intern_type thy raw_tyco))
Code_Thingol.lookup_instance;
in
val _ = Thy_Output.antiquotation "code_stmts"
(parse_const_terms -- Scan.repeat (parse_consts || parse_types || parse_classes || parse_instances)
-- Scan.lift (Args.parens (Args.name -- Scan.option Parse.int)))
(fn {context = ctxt, ...} => fn ((mk_cs, mk_stmtss), (target, some_width)) =>
let val thy = ProofContext.theory_of ctxt in
present_code thy (mk_cs thy)
(fn naming => maps (fn f => f thy naming) mk_stmtss)
target some_width "Example" []
end);
end;
(** serializer configuration **)
(* data access *)
fun cert_class thy class =
let
val _ = AxClass.get_info thy class;
in class end;
fun read_class thy = cert_class thy o Sign.intern_class thy;
fun cert_tyco thy tyco =
let
val _ = if Sign.declared_tyname thy tyco then ()
else error ("No such type constructor: " ^ quote tyco);
in tyco end;
fun read_tyco thy = cert_tyco thy o Sign.intern_type thy;
fun cert_inst thy (class, tyco) =
(cert_class thy class, cert_tyco thy tyco);
fun read_inst thy (raw_tyco, raw_class) =
(read_class thy raw_class, read_tyco thy raw_tyco);
fun gen_add_syntax (mapp, upd, del) prep_x prep_syn target raw_x some_raw_syn thy =
let
val x = prep_x thy raw_x;
val change = case some_raw_syn
of SOME raw_syn => upd (x, prep_syn thy x raw_syn)
| NONE => del x;
in (map_symbol_syntax target o mapp) change thy end;
fun gen_add_class_syntax prep_class =
gen_add_syntax (apfst o apfst, Symtab.update, Symtab.delete_safe) prep_class ((K o K) I);
fun gen_add_instance_syntax prep_inst =
gen_add_syntax (apfst o apsnd, Symreltab.update, Symreltab.delete_safe) prep_inst ((K o K) I);
fun gen_add_tyco_syntax prep_tyco =
gen_add_syntax (apsnd o apfst, Symtab.update, Symtab.delete_safe) prep_tyco
(fn thy => fn tyco => fn syn => if fst syn <> Sign.arity_number thy tyco
then error ("Number of arguments mismatch in syntax for type constructor " ^ quote tyco)
else syn);
fun gen_add_const_syntax prep_const =
gen_add_syntax (apsnd o apsnd, Symtab.update, Symtab.delete_safe) prep_const
(fn thy => fn c => fn syn =>
if Code_Printer.requires_args syn > Code.args_number thy c
then error ("Too many arguments in syntax for constant " ^ quote c)
else syn);
fun add_reserved target sym thy =
let
val (_, data) = collapse_hierarchy thy target;
val _ = if member (op =) (the_reserved data) sym
then error ("Reserved symbol " ^ quote sym ^ " already declared")
else ();
in
thy
|> map_reserved target (insert (op =) sym)
end;
fun gen_add_include read_const target args thy =
let
fun add (name, SOME (content, raw_cs)) incls =
let
val _ = if Symtab.defined incls name
then warning ("Overwriting existing include " ^ name)
else ();
val cs = map (read_const thy) raw_cs;
in Symtab.update (name, (Code_Printer.str content, cs)) incls end
| add (name, NONE) incls = Symtab.delete name incls;
in map_includes target (add args) thy end;
val add_include = gen_add_include (K I);
val add_include_cmd = gen_add_include Code.read_const;
fun add_module_alias target (thyname, "") =
map_module_alias target (Symtab.delete thyname)
| add_module_alias target (thyname, modlname) =
let
val xs = Long_Name.explode modlname;
val xs' = map (Name.desymbolize true) xs;
in if xs' = xs
then map_module_alias target (Symtab.update (thyname, modlname))
else error ("Invalid module name: " ^ quote modlname ^ "\n"
^ "perhaps try " ^ quote (Long_Name.implode xs'))
end;
fun gen_allow_abort prep_const raw_c thy =
let
val c = prep_const thy raw_c;
in thy |> (Targets.map o apfst o apsnd) (insert (op =) c) end;
(* concrete syntax *)
local
fun zip_list (x::xs) f g =
f
:|-- (fn y =>
fold_map (fn x => g |-- f >> pair x) xs
:|-- (fn xys => pair ((x, y) :: xys)));
fun process_multi_syntax parse_thing parse_syntax change =
(Parse.and_list1 parse_thing
:|-- (fn things => Scan.repeat1 (Parse.$$$ "(" |-- Parse.name --
(zip_list things parse_syntax (Parse.$$$ "and")) --| Parse.$$$ ")")))
>> (Toplevel.theory oo fold)
(fn (target, syns) => fold (fn (raw_x, syn) => change target raw_x syn) syns);
in
val add_class_syntax = gen_add_class_syntax cert_class;
val add_instance_syntax = gen_add_instance_syntax cert_inst;
val add_tyco_syntax = gen_add_tyco_syntax cert_tyco;
val add_const_syntax = gen_add_const_syntax (K I);
val allow_abort = gen_allow_abort (K I);
val add_reserved = add_reserved;
val add_include = add_include;
val add_class_syntax_cmd = gen_add_class_syntax read_class;
val add_instance_syntax_cmd = gen_add_instance_syntax read_inst;
val add_tyco_syntax_cmd = gen_add_tyco_syntax read_tyco;
val add_const_syntax_cmd = gen_add_const_syntax Code.read_const;
val allow_abort_cmd = gen_allow_abort Code.read_const;
fun parse_args f args =
case Scan.read Token.stopper f args
of SOME x => x
| NONE => error "Bad serializer arguments";
(** Isar setup **)
val (inK, module_nameK, fileK, checkingK) = ("in", "module_name", "file", "checking");
val code_expr_argsP = Scan.optional (Parse.$$$ "(" |-- Args.parse --| Parse.$$$ ")") [];
val code_exprP =
Scan.repeat1 Parse.term_group :|-- (fn raw_cs =>
((Parse.$$$ checkingK |-- Scan.repeat (Parse.name
-- ((Parse.$$$ "?" |-- Scan.succeed false) || Scan.succeed true) -- code_expr_argsP))
>> (fn seris => check_code_cmd raw_cs seris)
|| Scan.repeat (Parse.$$$ inK |-- Parse.name
-- Scan.optional (Parse.$$$ module_nameK |-- Parse.name) ""
-- Scan.optional (Parse.$$$ fileK |-- Parse.name) ""
-- code_expr_argsP) >> (fn seris => export_code_cmd raw_cs seris)));
val _ = List.app Keyword.keyword [inK, module_nameK, fileK, checkingK];
val _ =
Outer_Syntax.command "code_class" "define code syntax for class" Keyword.thy_decl (
process_multi_syntax Parse.xname (Scan.option Parse.string)
add_class_syntax_cmd);
val _ =
Outer_Syntax.command "code_instance" "define code syntax for instance" Keyword.thy_decl (
process_multi_syntax (Parse.xname --| Parse.$$$ "::" -- Parse.xname)
(Scan.option (Parse.minus >> K ()))
add_instance_syntax_cmd);
val _ =
Outer_Syntax.command "code_type" "define code syntax for type constructor" Keyword.thy_decl (
process_multi_syntax Parse.xname Code_Printer.parse_tyco_syntax
add_tyco_syntax_cmd);
val _ =
Outer_Syntax.command "code_const" "define code syntax for constant" Keyword.thy_decl (
process_multi_syntax Parse.term_group Code_Printer.parse_const_syntax
add_const_syntax_cmd);
val _ =
Outer_Syntax.command "code_reserved" "declare words as reserved for target language"
Keyword.thy_decl (
Parse.name -- Scan.repeat1 Parse.name
>> (fn (target, reserveds) => (Toplevel.theory o fold (add_reserved target)) reserveds)
);
val _ =
Outer_Syntax.command "code_include" "declare piece of code to be included in generated code"
Keyword.thy_decl (
Parse.name -- Parse.name -- (Parse.text :|-- (fn "-" => Scan.succeed NONE
| s => Scan.optional (Parse.$$$ "attach" |-- Scan.repeat1 Parse.term) [] >> pair s >> SOME))
>> (fn ((target, name), content_consts) =>
(Toplevel.theory o add_include_cmd target) (name, content_consts))
);
val _ =
Outer_Syntax.command "code_modulename" "alias module to other name" Keyword.thy_decl (
Parse.name -- Scan.repeat1 (Parse.name -- Parse.name)
>> (fn (target, modlnames) => (Toplevel.theory o fold (add_module_alias target)) modlnames)
);
val _ =
Outer_Syntax.command "code_abort" "permit constant to be implemented as program abort"
Keyword.thy_decl (
Scan.repeat1 Parse.term_group >> (Toplevel.theory o fold allow_abort_cmd)
);
val _ =
Outer_Syntax.command "export_code" "generate executable code for constants"
Keyword.diag (Parse.!!! code_exprP >> (fn f => Toplevel.keep (f o Toplevel.theory_of)));
end; (*local*)
(** external entrance point -- for codegen tool **)
fun codegen_tool thyname cmd_expr =
let
val thy = Thy_Info.get_theory thyname;
val parse = Scan.read Token.stopper (Parse.!!! code_exprP) o
(filter Token.is_proper o Outer_Syntax.scan Position.none);
in case parse cmd_expr
of SOME f => (writeln "Now generating code..."; f thy)
| NONE => error ("Bad directive " ^ quote cmd_expr)
end;
end; (*struct*)