New function change_type for changing type assignments of theorems,
axioms and oracles.
(* Title: HOLCF/sprod0.thy
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Strict product
*)
Sprod0 = Cfun3 +
(* new type for strict product *)
types "**" 2 (infixr 20)
arities "**" :: (pcpo,pcpo)term
consts
Sprod :: "('a => 'b => bool)set"
Spair_Rep :: "['a,'b] => ['a,'b] => bool"
Rep_Sprod :: "('a ** 'b) => ('a => 'b => bool)"
Abs_Sprod :: "('a => 'b => bool) => ('a ** 'b)"
Ispair :: "['a,'b] => ('a ** 'b)"
Isfst :: "('a ** 'b) => 'a"
Issnd :: "('a ** 'b) => 'b"
rules
Spair_Rep_def "Spair_Rep == (%a b. %x y.\
\ (~a=UU & ~b=UU --> x=a & y=b ))"
Sprod_def "Sprod == {f. ? a b. f = Spair_Rep(a,b)}"
(*faking a type definition... *)
(* "**" is isomorphic to Sprod *)
Rep_Sprod "Rep_Sprod(p):Sprod"
Rep_Sprod_inverse "Abs_Sprod(Rep_Sprod(p)) = p"
Abs_Sprod_inverse "f:Sprod ==> Rep_Sprod(Abs_Sprod(f)) = f"
(*defining the abstract constants*)
Ispair_def "Ispair(a,b) == Abs_Sprod(Spair_Rep(a,b))"
Isfst_def "Isfst(p) == @z.\
\ (p=Ispair(UU,UU) --> z=UU)\
\ &(! a b. ~a=UU & ~b=UU & p=Ispair(a,b) --> z=a)"
Issnd_def "Issnd(p) == @z.\
\ (p=Ispair(UU,UU) --> z=UU)\
\ &(! a b. ~a=UU & ~b=UU & p=Ispair(a,b) --> z=b)"
end