Fixed typo.
(* Title: ZF/OrderType.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Order types and ordinal arithmetic.
The order type of a well-ordering is the least ordinal isomorphic to it.
*)
OrderType = OrderArith + Ordinal +
consts
ordermap :: "[i,i]=>i"
ordertype :: "[i,i]=>i"
Ord_alt :: "i => o"
"**" :: "[i,i]=>i" (infixl 70)
"++" :: "[i,i]=>i" (infixl 65)
defs
ordermap_def
"ordermap(A,r) == lam x:A. wfrec[A](r, x, %x f. f `` pred(A,x,r))"
ordertype_def "ordertype(A,r) == ordermap(A,r)``A"
Ord_alt_def (*alternative definition of ordinal numbers*)
"Ord_alt(X) == well_ord(X, Memrel(X)) & (ALL u:X. u=pred(X, u, Memrel(X)))"
(*ordinal multiplication*)
omult_def "i ** j == ordertype(j*i, rmult(j,Memrel(j),i,Memrel(i)))"
(*ordinal addition*)
oadd_def "i ++ j == ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))"
end