simplified definition of class euclidean_space;
removed classes real_basis and real_basis_with_inner
header {*Instanciates the finite cartesian product of euclidean spaces as a euclidean space.*}
theory Cartesian_Euclidean_Space
imports Finite_Cartesian_Product Integration
begin
lemma delta_mult_idempotent:
"(if k=a then 1 else (0::'a::semiring_1)) * (if k=a then 1 else 0) = (if k=a then 1 else 0)" by (cases "k=a", auto)
lemma setsum_Plus:
"\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow>
(\<Sum>x\<in>A <+> B. g x) = (\<Sum>x\<in>A. g (Inl x)) + (\<Sum>x\<in>B. g (Inr x))"
unfolding Plus_def
by (subst setsum_Un_disjoint, auto simp add: setsum_reindex)
lemma setsum_UNIV_sum:
fixes g :: "'a::finite + 'b::finite \<Rightarrow> _"
shows "(\<Sum>x\<in>UNIV. g x) = (\<Sum>x\<in>UNIV. g (Inl x)) + (\<Sum>x\<in>UNIV. g (Inr x))"
apply (subst UNIV_Plus_UNIV [symmetric])
apply (rule setsum_Plus [OF finite finite])
done
lemma setsum_mult_product:
"setsum h {..<A * B :: nat} = (\<Sum>i\<in>{..<A}. \<Sum>j\<in>{..<B}. h (j + i * B))"
unfolding sumr_group[of h B A, unfolded atLeast0LessThan, symmetric]
proof (rule setsum_cong, simp, rule setsum_reindex_cong)
fix i show "inj_on (\<lambda>j. j + i * B) {..<B}" by (auto intro!: inj_onI)
show "{i * B..<i * B + B} = (\<lambda>j. j + i * B) ` {..<B}"
proof safe
fix j assume "j \<in> {i * B..<i * B + B}"
thus "j \<in> (\<lambda>j. j + i * B) ` {..<B}"
by (auto intro!: image_eqI[of _ _ "j - i * B"])
qed simp
qed simp
subsection{* Basic componentwise operations on vectors. *}
instantiation cart :: (times,finite) times
begin
definition vector_mult_def : "op * \<equiv> (\<lambda> x y. (\<chi> i. (x$i) * (y$i)))"
instance ..
end
instantiation cart :: (one,finite) one
begin
definition vector_one_def : "1 \<equiv> (\<chi> i. 1)"
instance ..
end
instantiation cart :: (ord,finite) ord
begin
definition vector_le_def:
"less_eq (x :: 'a ^'b) y = (ALL i. x$i <= y$i)"
definition vector_less_def: "less (x :: 'a ^'b) y = (ALL i. x$i < y$i)"
instance by (intro_classes)
end
text{* The ordering on one-dimensional vectors is linear. *}
class cart_one = assumes UNIV_one: "card (UNIV \<Colon> 'a set) = Suc 0"
begin
subclass finite
proof from UNIV_one show "finite (UNIV :: 'a set)"
by (auto intro!: card_ge_0_finite) qed
end
instantiation cart :: (linorder,cart_one) linorder begin
instance proof
guess a B using UNIV_one[where 'a='b] unfolding card_Suc_eq apply- by(erule exE)+
hence *:"UNIV = {a}" by auto
have "\<And>P. (\<forall>i\<in>UNIV. P i) \<longleftrightarrow> P a" unfolding * by auto hence all:"\<And>P. (\<forall>i. P i) \<longleftrightarrow> P a" by auto
fix x y z::"'a^'b::cart_one" note * = vector_le_def vector_less_def all Cart_eq
show "x\<le>x" "(x < y) = (x \<le> y \<and> \<not> y \<le> x)" "x\<le>y \<or> y\<le>x" unfolding * by(auto simp only:field_simps)
{ assume "x\<le>y" "y\<le>z" thus "x\<le>z" unfolding * by(auto simp only:field_simps) }
{ assume "x\<le>y" "y\<le>x" thus "x=y" unfolding * by(auto simp only:field_simps) }
qed end
text{* Constant Vectors *}
definition "vec x = (\<chi> i. x)"
text{* Also the scalar-vector multiplication. *}
definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
where "c *s x = (\<chi> i. c * (x$i))"
subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *}
method_setup vector = {*
let
val ss1 = HOL_basic_ss addsimps [@{thm setsum_addf} RS sym,
@{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
@{thm setsum_left_distrib}, @{thm setsum_negf} RS sym]
val ss2 = @{simpset} addsimps
[@{thm vector_add_def}, @{thm vector_mult_def},
@{thm vector_minus_def}, @{thm vector_uminus_def},
@{thm vector_one_def}, @{thm vector_zero_def}, @{thm vec_def},
@{thm vector_scaleR_def},
@{thm Cart_lambda_beta}, @{thm vector_scalar_mult_def}]
fun vector_arith_tac ths =
simp_tac ss1
THEN' (fn i => rtac @{thm setsum_cong2} i
ORELSE rtac @{thm setsum_0'} i
ORELSE simp_tac (HOL_basic_ss addsimps [@{thm "Cart_eq"}]) i)
(* THEN' TRY o clarify_tac HOL_cs THEN' (TRY o rtac @{thm iffI}) *)
THEN' asm_full_simp_tac (ss2 addsimps ths)
in
Attrib.thms >> (fn ths => K (SIMPLE_METHOD' (vector_arith_tac ths)))
end
*} "lift trivial vector statements to real arith statements"
lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def)
lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def)
lemma vec_inj[simp]: "vec x = vec y \<longleftrightarrow> x = y" by vector
lemma vec_in_image_vec: "vec x \<in> (vec ` S) \<longleftrightarrow> x \<in> S" by auto
lemma vec_add: "vec(x + y) = vec x + vec y" by (vector vec_def)
lemma vec_sub: "vec(x - y) = vec x - vec y" by (vector vec_def)
lemma vec_cmul: "vec(c * x) = c *s vec x " by (vector vec_def)
lemma vec_neg: "vec(- x) = - vec x " by (vector vec_def)
lemma vec_setsum: assumes fS: "finite S"
shows "vec(setsum f S) = setsum (vec o f) S"
apply (induct rule: finite_induct[OF fS])
apply (simp)
apply (auto simp add: vec_add)
done
text{* Obvious "component-pushing". *}
lemma vec_component [simp]: "vec x $ i = x"
by (vector vec_def)
lemma vector_mult_component [simp]: "(x * y)$i = x$i * y$i"
by vector
lemma vector_smult_component [simp]: "(c *s y)$i = c * (y$i)"
by vector
lemma cond_component: "(if b then x else y)$i = (if b then x$i else y$i)" by vector
lemmas vector_component =
vec_component vector_add_component vector_mult_component
vector_smult_component vector_minus_component vector_uminus_component
vector_scaleR_component cond_component
subsection {* Some frequently useful arithmetic lemmas over vectors. *}
instance cart :: (semigroup_mult,finite) semigroup_mult
apply (intro_classes) by (vector mult_assoc)
instance cart :: (monoid_mult,finite) monoid_mult
apply (intro_classes) by vector+
instance cart :: (ab_semigroup_mult,finite) ab_semigroup_mult
apply (intro_classes) by (vector mult_commute)
instance cart :: (ab_semigroup_idem_mult,finite) ab_semigroup_idem_mult
apply (intro_classes) by (vector mult_idem)
instance cart :: (comm_monoid_mult,finite) comm_monoid_mult
apply (intro_classes) by vector
instance cart :: (semiring,finite) semiring
apply (intro_classes) by (vector field_simps)+
instance cart :: (semiring_0,finite) semiring_0
apply (intro_classes) by (vector field_simps)+
instance cart :: (semiring_1,finite) semiring_1
apply (intro_classes) by vector
instance cart :: (comm_semiring,finite) comm_semiring
apply (intro_classes) by (vector field_simps)+
instance cart :: (comm_semiring_0,finite) comm_semiring_0 by (intro_classes)
instance cart :: (cancel_comm_monoid_add, finite) cancel_comm_monoid_add ..
instance cart :: (semiring_0_cancel,finite) semiring_0_cancel by (intro_classes)
instance cart :: (comm_semiring_0_cancel,finite) comm_semiring_0_cancel by (intro_classes)
instance cart :: (ring,finite) ring by (intro_classes)
instance cart :: (semiring_1_cancel,finite) semiring_1_cancel by (intro_classes)
instance cart :: (comm_semiring_1,finite) comm_semiring_1 by (intro_classes)
instance cart :: (ring_1,finite) ring_1 ..
instance cart :: (real_algebra,finite) real_algebra
apply intro_classes
apply (simp_all add: vector_scaleR_def field_simps)
apply vector
apply vector
done
instance cart :: (real_algebra_1,finite) real_algebra_1 ..
lemma of_nat_index:
"(of_nat n :: 'a::semiring_1 ^'n)$i = of_nat n"
apply (induct n)
apply vector
apply vector
done
lemma one_index[simp]:
"(1 :: 'a::one ^'n)$i = 1" by vector
instance cart :: (semiring_char_0, finite) semiring_char_0
proof
fix m n :: nat
show "inj (of_nat :: nat \<Rightarrow> 'a ^ 'b)"
by (auto intro!: injI simp add: Cart_eq of_nat_index)
qed
instance cart :: (comm_ring_1,finite) comm_ring_1 ..
instance cart :: (ring_char_0,finite) ring_char_0 ..
instance cart :: (real_vector,finite) real_vector ..
lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x"
by (vector mult_assoc)
lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x"
by (vector field_simps)
lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y"
by (vector field_simps)
lemma vector_smult_lzero[simp]: "(0::'a::mult_zero) *s x = 0" by vector
lemma vector_smult_lid[simp]: "(1::'a::monoid_mult) *s x = x" by vector
lemma vector_ssub_ldistrib: "(c::'a::ring) *s (x - y) = c *s x - c *s y"
by (vector field_simps)
lemma vector_smult_rneg: "(c::'a::ring) *s -x = -(c *s x)" by vector
lemma vector_smult_lneg: "- (c::'a::ring) *s x = -(c *s x)" by vector
lemma vector_sneg_minus1: "-x = (- (1::'a::ring_1)) *s x" by vector
lemma vector_smult_rzero[simp]: "c *s 0 = (0::'a::mult_zero ^ 'n)" by vector
lemma vector_sub_rdistrib: "((a::'a::ring) - b) *s x = a *s x - b *s x"
by (vector field_simps)
lemma vec_eq[simp]: "(vec m = vec n) \<longleftrightarrow> (m = n)"
by (simp add: Cart_eq)
lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
by vector
lemma vector_mul_lcancel[simp]: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y"
by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib)
lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib)
lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==> a *s x = a *s y ==> (x = y)"
by (metis vector_mul_lcancel)
lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
by (metis vector_mul_rcancel)
lemma component_le_norm_cart: "\<bar>x$i\<bar> <= norm x"
apply (simp add: norm_vector_def)
apply (rule member_le_setL2, simp_all)
done
lemma norm_bound_component_le_cart: "norm x <= e ==> \<bar>x$i\<bar> <= e"
by (metis component_le_norm_cart order_trans)
lemma norm_bound_component_lt_cart: "norm x < e ==> \<bar>x$i\<bar> < e"
by (metis component_le_norm_cart basic_trans_rules(21))
lemma norm_le_l1_cart: "norm x <= setsum(\<lambda>i. \<bar>x$i\<bar>) UNIV"
by (simp add: norm_vector_def setL2_le_setsum)
lemma scalar_mult_eq_scaleR: "c *s x = c *\<^sub>R x"
unfolding vector_scaleR_def vector_scalar_mult_def by simp
lemma dist_mul[simp]: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y"
unfolding dist_norm scalar_mult_eq_scaleR
unfolding scaleR_right_diff_distrib[symmetric] by simp
lemma setsum_component [simp]:
fixes f:: " 'a \<Rightarrow> ('b::comm_monoid_add) ^'n"
shows "(setsum f S)$i = setsum (\<lambda>x. (f x)$i) S"
by (cases "finite S", induct S set: finite, simp_all)
lemma setsum_eq: "setsum f S = (\<chi> i. setsum (\<lambda>x. (f x)$i ) S)"
by (simp add: Cart_eq)
lemma setsum_cmul:
fixes f:: "'c \<Rightarrow> ('a::semiring_1)^'n"
shows "setsum (\<lambda>x. c *s f x) S = c *s setsum f S"
by (simp add: Cart_eq setsum_right_distrib)
(* TODO: use setsum_norm_allsubsets_bound *)
lemma setsum_norm_allsubsets_bound_cart:
fixes f:: "'a \<Rightarrow> real ^'n"
assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e"
shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real CARD('n) * e"
proof-
let ?d = "real CARD('n)"
let ?nf = "\<lambda>x. norm (f x)"
let ?U = "UNIV :: 'n set"
have th0: "setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P = setsum (\<lambda>i. setsum (\<lambda>x. \<bar>f x $ i\<bar>) P) ?U"
by (rule setsum_commute)
have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def)
have "setsum ?nf P \<le> setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P"
apply (rule setsum_mono) by (rule norm_le_l1_cart)
also have "\<dots> \<le> 2 * ?d * e"
unfolding th0 th1
proof(rule setsum_bounded)
fix i assume i: "i \<in> ?U"
let ?Pp = "{x. x\<in> P \<and> f x $ i \<ge> 0}"
let ?Pn = "{x. x \<in> P \<and> f x $ i < 0}"
have thp: "P = ?Pp \<union> ?Pn" by auto
have thp0: "?Pp \<inter> ?Pn ={}" by auto
have PpP: "?Pp \<subseteq> P" and PnP: "?Pn \<subseteq> P" by blast+
have Ppe:"setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp \<le> e"
using component_le_norm_cart[of "setsum (\<lambda>x. f x) ?Pp" i] fPs[OF PpP]
by (auto intro: abs_le_D1)
have Pne: "setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn \<le> e"
using component_le_norm_cart[of "setsum (\<lambda>x. - f x) ?Pn" i] fPs[OF PnP]
by (auto simp add: setsum_negf intro: abs_le_D1)
have "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn"
apply (subst thp)
apply (rule setsum_Un_zero)
using fP thp0 by auto
also have "\<dots> \<le> 2*e" using Pne Ppe by arith
finally show "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P \<le> 2*e" .
qed
finally show ?thesis .
qed
subsection {* A bijection between 'n::finite and {..<CARD('n)} *}
definition cart_bij_nat :: "nat \<Rightarrow> ('n::finite)" where
"cart_bij_nat = (SOME p. bij_betw p {..<CARD('n)} (UNIV::'n set) )"
abbreviation "\<pi> \<equiv> cart_bij_nat"
definition "\<pi>' = inv_into {..<CARD('n)} (\<pi>::nat \<Rightarrow> ('n::finite))"
lemma bij_betw_pi:
"bij_betw \<pi> {..<CARD('n::finite)} (UNIV::('n::finite) set)"
using ex_bij_betw_nat_finite[of "UNIV::'n set"]
by (auto simp: cart_bij_nat_def atLeast0LessThan
intro!: someI_ex[of "\<lambda>x. bij_betw x {..<CARD('n)} (UNIV::'n set)"])
lemma bij_betw_pi'[intro]: "bij_betw \<pi>' (UNIV::'n set) {..<CARD('n::finite)}"
using bij_betw_inv_into[OF bij_betw_pi] unfolding \<pi>'_def by auto
lemma pi'_inj[intro]: "inj \<pi>'"
using bij_betw_pi' unfolding bij_betw_def by auto
lemma pi'_range[intro]: "\<And>i::'n. \<pi>' i < CARD('n::finite)"
using bij_betw_pi' unfolding bij_betw_def by auto
lemma \<pi>\<pi>'[simp]: "\<And>i::'n::finite. \<pi> (\<pi>' i) = i"
using bij_betw_pi by (auto intro!: f_inv_into_f simp: \<pi>'_def bij_betw_def)
lemma \<pi>'\<pi>[simp]: "\<And>i. i\<in>{..<CARD('n::finite)} \<Longrightarrow> \<pi>' (\<pi> i::'n) = i"
using bij_betw_pi by (auto intro!: inv_into_f_eq simp: \<pi>'_def bij_betw_def)
lemma \<pi>\<pi>'_alt[simp]: "\<And>i. i<CARD('n::finite) \<Longrightarrow> \<pi>' (\<pi> i::'n) = i"
by auto
lemma \<pi>_inj_on: "inj_on (\<pi>::nat\<Rightarrow>'n::finite) {..<CARD('n)}"
using bij_betw_pi[where 'n='n] by (simp add: bij_betw_def)
instantiation cart :: (euclidean_space, finite) euclidean_space
begin
definition "dimension (t :: ('a ^ 'b) itself) = CARD('b) * DIM('a)"
definition "(basis i::'a^'b) =
(if i < (CARD('b) * DIM('a))
then (\<chi> j::'b. if j = \<pi>(i div DIM('a)) then basis (i mod DIM('a)) else 0)
else 0)"
lemma basis_eq:
assumes "i < CARD('b)" and "j < DIM('a)"
shows "basis (j + i * DIM('a)) = (\<chi> k. if k = \<pi> i then basis j else 0)"
proof -
have "j + i * DIM('a) < DIM('a) * (i + 1)" using assms by (auto simp: field_simps)
also have "\<dots> \<le> DIM('a) * CARD('b)" using assms unfolding mult_le_cancel1 by auto
finally show ?thesis
unfolding basis_cart_def using assms by (auto simp: Cart_eq not_less field_simps)
qed
lemma basis_eq_pi':
assumes "j < DIM('a)"
shows "basis (j + \<pi>' i * DIM('a)) $ k = (if k = i then basis j else 0)"
apply (subst basis_eq)
using pi'_range assms by simp_all
lemma split_times_into_modulo[consumes 1]:
fixes k :: nat
assumes "k < A * B"
obtains i j where "i < A" and "j < B" and "k = j + i * B"
proof
have "A * B \<noteq> 0"
proof assume "A * B = 0" with assms show False by simp qed
hence "0 < B" by auto
thus "k mod B < B" using `0 < B` by auto
next
have "k div B * B \<le> k div B * B + k mod B" by (rule le_add1)
also have "... < A * B" using assms by simp
finally show "k div B < A" by auto
qed simp
lemma split_CARD_DIM[consumes 1]:
fixes k :: nat
assumes k: "k < CARD('b) * DIM('a)"
obtains i and j::'b where "i < DIM('a)" "k = i + \<pi>' j * DIM('a)"
proof -
from split_times_into_modulo[OF k] guess i j . note ij = this
show thesis
proof
show "j < DIM('a)" using ij by simp
show "k = j + \<pi>' (\<pi> i :: 'b) * DIM('a)"
using ij by simp
qed
qed
lemma linear_less_than_times:
fixes i j A B :: nat assumes "i < B" "j < A"
shows "j + i * A < B * A"
proof -
have "i * A + j < (Suc i)*A" using `j < A` by simp
also have "\<dots> \<le> B * A" using `i < B` unfolding mult_le_cancel2 by simp
finally show ?thesis by simp
qed
lemma DIM_cart[simp]: "DIM('a^'b) = CARD('b) * DIM('a)"
by (rule dimension_cart_def)
lemma all_less_DIM_cart:
fixes m n :: nat
shows "(\<forall>i<DIM('a^'b). P i) \<longleftrightarrow> (\<forall>x::'b. \<forall>i<DIM('a). P (i + \<pi>' x * DIM('a)))"
unfolding DIM_cart
apply safe
apply (drule spec, erule mp, erule linear_less_than_times [OF pi'_range])
apply (erule split_CARD_DIM, simp)
done
lemma eq_pi_iff:
fixes x :: "'c::finite"
shows "i < CARD('c::finite) \<Longrightarrow> x = \<pi> i \<longleftrightarrow> \<pi>' x = i"
by auto
lemma all_less_mult:
fixes m n :: nat
shows "(\<forall>i<(m * n). P i) \<longleftrightarrow> (\<forall>i<m. \<forall>j<n. P (j + i * n))"
apply safe
apply (drule spec, erule mp, erule (1) linear_less_than_times)
apply (erule split_times_into_modulo, simp)
done
lemma inner_if:
"inner (if a then x else y) z = (if a then inner x z else inner y z)"
"inner x (if a then y else z) = (if a then inner x y else inner x z)"
by simp_all
instance proof
show "0 < DIM('a ^ 'b)"
unfolding dimension_cart_def
by (intro mult_pos_pos zero_less_card_finite DIM_positive)
next
fix i :: nat
assume "DIM('a ^ 'b) \<le> i" thus "basis i = (0::'a^'b)"
unfolding dimension_cart_def basis_cart_def
by simp
next
show "\<forall>i<DIM('a ^ 'b). \<forall>j<DIM('a ^ 'b).
(basis i :: 'a ^ 'b) \<bullet> basis j = (if i = j then 1 else 0)"
apply (simp add: inner_vector_def)
apply safe
apply (erule split_CARD_DIM, simp add: basis_eq_pi')
apply (simp add: inner_if setsum_delta cong: if_cong)
apply (simp add: basis_orthonormal)
apply (elim split_CARD_DIM, simp add: basis_eq_pi')
apply (simp add: inner_if setsum_delta cong: if_cong)
apply (clarsimp simp add: basis_orthonormal)
done
next
fix x :: "'a ^ 'b"
show "(\<forall>i<DIM('a ^ 'b). inner (basis i) x = 0) \<longleftrightarrow> x = 0"
unfolding all_less_DIM_cart
unfolding inner_vector_def
apply (simp add: basis_eq_pi')
apply (simp add: inner_if setsum_delta cong: if_cong)
apply (simp add: euclidean_all_zero)
apply (simp add: Cart_eq)
done
qed
end
lemma if_distr: "(if P then f else g) $ i = (if P then f $ i else g $ i)" by simp
lemma split_dimensions'[consumes 1]:
assumes "k < DIM('a::euclidean_space^'b)"
obtains i j where "i < CARD('b::finite)" and "j < DIM('a::euclidean_space)" and "k = j + i * DIM('a::euclidean_space)"
using split_times_into_modulo[OF assms[simplified]] .
lemma cart_euclidean_bound[intro]:
assumes j:"j < DIM('a::euclidean_space)"
shows "j + \<pi>' (i::'b::finite) * DIM('a) < CARD('b) * DIM('a::euclidean_space)"
using linear_less_than_times[OF pi'_range j, of i] .
lemma (in euclidean_space) forall_CARD_DIM:
"(\<forall>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<forall>(i::'b::finite) j. j<DIM('a) \<longrightarrow> P (j + \<pi>' i * DIM('a)))"
(is "?l \<longleftrightarrow> ?r")
proof (safe elim!: split_times_into_modulo)
fix i :: 'b and j assume "j < DIM('a)"
note linear_less_than_times[OF pi'_range[of i] this]
moreover assume "?l"
ultimately show "P (j + \<pi>' i * DIM('a))" by auto
next
fix i j assume "i < CARD('b)" "j < DIM('a)" and "?r"
from `?r`[rule_format, OF `j < DIM('a)`, of "\<pi> i"] `i < CARD('b)`
show "P (j + i * DIM('a))" by simp
qed
lemma (in euclidean_space) exists_CARD_DIM:
"(\<exists>i<CARD('b) * DIM('a). P i) \<longleftrightarrow> (\<exists>i::'b::finite. \<exists>j<DIM('a). P (j + \<pi>' i * DIM('a)))"
using forall_CARD_DIM[where 'b='b, of "\<lambda>x. \<not> P x"] by blast
lemma forall_CARD:
"(\<forall>i<CARD('b). P i) \<longleftrightarrow> (\<forall>i::'b::finite. P (\<pi>' i))"
using forall_CARD_DIM[where 'a=real, of P] by simp
lemma exists_CARD:
"(\<exists>i<CARD('b). P i) \<longleftrightarrow> (\<exists>i::'b::finite. P (\<pi>' i))"
using exists_CARD_DIM[where 'a=real, of P] by simp
lemmas cart_simps = forall_CARD_DIM exists_CARD_DIM forall_CARD exists_CARD
lemma cart_euclidean_nth[simp]:
fixes x :: "('a::euclidean_space, 'b::finite) cart"
assumes j:"j < DIM('a)"
shows "x $$ (j + \<pi>' i * DIM('a)) = x $ i $$ j"
unfolding euclidean_component_def inner_vector_def basis_eq_pi'[OF j] if_distrib cond_application_beta
by (simp add: setsum_cases)
lemma real_euclidean_nth:
fixes x :: "real^'n"
shows "x $$ \<pi>' i = (x $ i :: real)"
using cart_euclidean_nth[where 'a=real, of 0 x i] by simp
lemmas nth_conv_component = real_euclidean_nth[symmetric]
lemma mult_split_eq:
fixes A :: nat assumes "x < A" "y < A"
shows "x + i * A = y + j * A \<longleftrightarrow> x = y \<and> i = j"
proof
assume *: "x + i * A = y + j * A"
{ fix x y i j assume "i < j" "x < A" and *: "x + i * A = y + j * A"
hence "x + i * A < Suc i * A" using `x < A` by simp
also have "\<dots> \<le> j * A" using `i < j` unfolding mult_le_cancel2 by simp
also have "\<dots> \<le> y + j * A" by simp
finally have "i = j" using * by simp }
note eq = this
have "i = j"
proof (cases rule: linorder_cases)
assume "i < j" from eq[OF this `x < A` *] show "i = j" by simp
next
assume "j < i" from eq[OF this `y < A` *[symmetric]] show "i = j" by simp
qed simp
thus "x = y \<and> i = j" using * by simp
qed simp
instance cart :: (ordered_euclidean_space,finite) ordered_euclidean_space
proof
fix x y::"'a^'b"
show "(x \<le> y) = (\<forall>i<DIM(('a, 'b) cart). x $$ i \<le> y $$ i)"
unfolding vector_le_def apply(subst eucl_le) by (simp add: cart_simps)
show"(x < y) = (\<forall>i<DIM(('a, 'b) cart). x $$ i < y $$ i)"
unfolding vector_less_def apply(subst eucl_less) by (simp add: cart_simps)
qed
subsection{* Basis vectors in coordinate directions. *}
definition "cart_basis k = (\<chi> i. if i = k then 1 else 0)"
lemma basis_component [simp]: "cart_basis k $ i = (if k=i then 1 else 0)"
unfolding cart_basis_def by simp
lemma norm_basis[simp]:
shows "norm (cart_basis k :: real ^'n) = 1"
apply (simp add: cart_basis_def norm_eq_sqrt_inner) unfolding inner_vector_def
apply (vector delta_mult_idempotent)
using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"] by auto
lemma norm_basis_1: "norm(cart_basis 1 :: real ^'n::{finite,one}) = 1"
by (rule norm_basis)
lemma vector_choose_size: "0 <= c ==> \<exists>(x::real^'n). norm x = c"
by (rule exI[where x="c *\<^sub>R cart_basis arbitrary"]) simp
lemma vector_choose_dist: assumes e: "0 <= e"
shows "\<exists>(y::real^'n). dist x y = e"
proof-
from vector_choose_size[OF e] obtain c:: "real ^'n" where "norm c = e"
by blast
then have "dist x (x - c) = e" by (simp add: dist_norm)
then show ?thesis by blast
qed
lemma basis_inj[intro]: "inj (cart_basis :: 'n \<Rightarrow> real ^'n)"
by (simp add: inj_on_def Cart_eq)
lemma basis_expansion:
"setsum (\<lambda>i. (x$i) *s cart_basis i) UNIV = (x::('a::ring_1) ^'n)" (is "?lhs = ?rhs" is "setsum ?f ?S = _")
by (auto simp add: Cart_eq if_distrib setsum_delta[of "?S", where ?'b = "'a", simplified] cong del: if_weak_cong)
lemma smult_conv_scaleR: "c *s x = scaleR c x"
unfolding vector_scalar_mult_def vector_scaleR_def by simp
lemma basis_expansion':
"setsum (\<lambda>i. (x$i) *\<^sub>R cart_basis i) UNIV = x"
by (rule basis_expansion [where 'a=real, unfolded smult_conv_scaleR])
lemma basis_expansion_unique:
"setsum (\<lambda>i. f i *s cart_basis i) UNIV = (x::('a::comm_ring_1) ^'n) \<longleftrightarrow> (\<forall>i. f i = x$i)"
by (simp add: Cart_eq setsum_delta if_distrib cong del: if_weak_cong)
lemma dot_basis:
shows "cart_basis i \<bullet> x = x$i" "x \<bullet> (cart_basis i) = (x$i)"
by (auto simp add: inner_vector_def cart_basis_def cond_application_beta if_distrib setsum_delta
cong del: if_weak_cong)
lemma inner_basis:
fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n"
shows "inner (cart_basis i) x = inner 1 (x $ i)"
and "inner x (cart_basis i) = inner (x $ i) 1"
unfolding inner_vector_def cart_basis_def
by (auto simp add: cond_application_beta if_distrib setsum_delta cong del: if_weak_cong)
lemma basis_eq_0: "cart_basis i = (0::'a::semiring_1^'n) \<longleftrightarrow> False"
by (auto simp add: Cart_eq)
lemma basis_nonzero:
shows "cart_basis k \<noteq> (0:: 'a::semiring_1 ^'n)"
by (simp add: basis_eq_0)
text {* some lemmas to map between Eucl and Cart *}
lemma basis_real_n[simp]:"(basis (\<pi>' i)::real^'a) = cart_basis i"
unfolding basis_cart_def using pi'_range[where 'n='a]
by (auto simp: Cart_eq Cart_lambda_beta)
subsection {* Orthogonality on cartesian products *}
lemma orthogonal_basis:
shows "orthogonal (cart_basis i) x \<longleftrightarrow> x$i = (0::real)"
by (auto simp add: orthogonal_def inner_vector_def cart_basis_def if_distrib
cond_application_beta setsum_delta cong del: if_weak_cong)
lemma orthogonal_basis_basis:
shows "orthogonal (cart_basis i :: real^'n) (cart_basis j) \<longleftrightarrow> i \<noteq> j"
unfolding orthogonal_basis[of i] basis_component[of j] by simp
subsection {* Linearity on cartesian products *}
lemma linear_vmul_component:
assumes lf: "linear f"
shows "linear (\<lambda>x. f x $ k *\<^sub>R v)"
using lf
by (auto simp add: linear_def algebra_simps)
subsection{* Adjoints on cartesian products *}
text {* TODO: The following lemmas about adjoints should hold for any
Hilbert space (i.e. complete inner product space).
(see \url{http://en.wikipedia.org/wiki/Hermitian_adjoint})
*}
lemma adjoint_works_lemma:
fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y"
proof-
let ?N = "UNIV :: 'n set"
let ?M = "UNIV :: 'm set"
have fN: "finite ?N" by simp
have fM: "finite ?M" by simp
{fix y:: "real ^ 'm"
let ?w = "(\<chi> i. (f (cart_basis i) \<bullet> y)) :: real ^ 'n"
{fix x
have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *\<^sub>R cart_basis i) ?N) \<bullet> y"
by (simp only: basis_expansion')
also have "\<dots> = (setsum (\<lambda>i. (x$i) *\<^sub>R f (cart_basis i)) ?N) \<bullet> y"
unfolding linear_setsum[OF lf fN]
by (simp add: linear_cmul[OF lf])
finally have "f x \<bullet> y = x \<bullet> ?w"
apply (simp only: )
apply (simp add: inner_vector_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] field_simps)
done}
}
then show ?thesis unfolding adjoint_def
some_eq_ex[of "\<lambda>f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y"]
using choice_iff[of "\<lambda>a b. \<forall>x. f x \<bullet> a = x \<bullet> b "]
by metis
qed
lemma adjoint_works:
fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "x \<bullet> adjoint f y = f x \<bullet> y"
using adjoint_works_lemma[OF lf] by metis
lemma adjoint_linear:
fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "linear (adjoint f)"
unfolding linear_def vector_eq_ldot[where 'a="real^'n", symmetric] apply safe
unfolding inner_simps smult_conv_scaleR adjoint_works[OF lf] by auto
lemma adjoint_clauses:
fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "x \<bullet> adjoint f y = f x \<bullet> y"
and "adjoint f y \<bullet> x = y \<bullet> f x"
by (simp_all add: adjoint_works[OF lf] inner_commute)
lemma adjoint_adjoint:
fixes f:: "real ^'n \<Rightarrow> real ^'m"
assumes lf: "linear f"
shows "adjoint (adjoint f) = f"
by (rule adjoint_unique, simp add: adjoint_clauses [OF lf])
subsection {* Matrix operations *}
text{* Matrix notation. NB: an MxN matrix is of type @{typ "'a^'n^'m"}, not @{typ "'a^'m^'n"} *}
definition matrix_matrix_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'p^'n \<Rightarrow> 'a ^ 'p ^'m" (infixl "**" 70)
where "m ** m' == (\<chi> i j. setsum (\<lambda>k. ((m$i)$k) * ((m'$k)$j)) (UNIV :: 'n set)) ::'a ^ 'p ^'m"
definition matrix_vector_mult :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n \<Rightarrow> 'a ^ 'm" (infixl "*v" 70)
where "m *v x \<equiv> (\<chi> i. setsum (\<lambda>j. ((m$i)$j) * (x$j)) (UNIV ::'n set)) :: 'a^'m"
definition vector_matrix_mult :: "'a ^ 'm \<Rightarrow> ('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n " (infixl "v*" 70)
where "v v* m == (\<chi> j. setsum (\<lambda>i. ((m$i)$j) * (v$i)) (UNIV :: 'm set)) :: 'a^'n"
definition "(mat::'a::zero => 'a ^'n^'n) k = (\<chi> i j. if i = j then k else 0)"
definition transpose where
"(transpose::'a^'n^'m \<Rightarrow> 'a^'m^'n) A = (\<chi> i j. ((A$j)$i))"
definition "(row::'m => 'a ^'n^'m \<Rightarrow> 'a ^'n) i A = (\<chi> j. ((A$i)$j))"
definition "(column::'n =>'a^'n^'m =>'a^'m) j A = (\<chi> i. ((A$i)$j))"
definition "rows(A::'a^'n^'m) = { row i A | i. i \<in> (UNIV :: 'm set)}"
definition "columns(A::'a^'n^'m) = { column i A | i. i \<in> (UNIV :: 'n set)}"
lemma mat_0[simp]: "mat 0 = 0" by (vector mat_def)
lemma matrix_add_ldistrib: "(A ** (B + C)) = (A ** B) + (A ** C)"
by (vector matrix_matrix_mult_def setsum_addf[symmetric] field_simps)
lemma matrix_mul_lid:
fixes A :: "'a::semiring_1 ^ 'm ^ 'n"
shows "mat 1 ** A = A"
apply (simp add: matrix_matrix_mult_def mat_def)
apply vector
by (auto simp only: if_distrib cond_application_beta setsum_delta'[OF finite] mult_1_left mult_zero_left if_True UNIV_I)
lemma matrix_mul_rid:
fixes A :: "'a::semiring_1 ^ 'm ^ 'n"
shows "A ** mat 1 = A"
apply (simp add: matrix_matrix_mult_def mat_def)
apply vector
by (auto simp only: if_distrib cond_application_beta setsum_delta[OF finite] mult_1_right mult_zero_right if_True UNIV_I cong: if_cong)
lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C"
apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
apply (subst setsum_commute)
apply simp
done
lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x"
apply (vector matrix_matrix_mult_def matrix_vector_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
apply (subst setsum_commute)
apply simp
done
lemma matrix_vector_mul_lid: "mat 1 *v x = (x::'a::semiring_1 ^ 'n)"
apply (vector matrix_vector_mult_def mat_def)
by (simp add: if_distrib cond_application_beta
setsum_delta' cong del: if_weak_cong)
lemma matrix_transpose_mul: "transpose(A ** B) = transpose B ** transpose (A::'a::comm_semiring_1^_^_)"
by (simp add: matrix_matrix_mult_def transpose_def Cart_eq mult_commute)
lemma matrix_eq:
fixes A B :: "'a::semiring_1 ^ 'n ^ 'm"
shows "A = B \<longleftrightarrow> (\<forall>x. A *v x = B *v x)" (is "?lhs \<longleftrightarrow> ?rhs")
apply auto
apply (subst Cart_eq)
apply clarify
apply (clarsimp simp add: matrix_vector_mult_def cart_basis_def if_distrib cond_application_beta Cart_eq cong del: if_weak_cong)
apply (erule_tac x="cart_basis ia" in allE)
apply (erule_tac x="i" in allE)
by (auto simp add: cart_basis_def if_distrib cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong)
lemma matrix_vector_mul_component:
shows "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
by (simp add: matrix_vector_mult_def inner_vector_def)
lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
apply (simp add: inner_vector_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
apply (subst setsum_commute)
by simp
lemma transpose_mat: "transpose (mat n) = mat n"
by (vector transpose_def mat_def)
lemma transpose_transpose: "transpose(transpose A) = A"
by (vector transpose_def)
lemma row_transpose:
fixes A:: "'a::semiring_1^_^_"
shows "row i (transpose A) = column i A"
by (simp add: row_def column_def transpose_def Cart_eq)
lemma column_transpose:
fixes A:: "'a::semiring_1^_^_"
shows "column i (transpose A) = row i A"
by (simp add: row_def column_def transpose_def Cart_eq)
lemma rows_transpose: "rows(transpose (A::'a::semiring_1^_^_)) = columns A"
by (auto simp add: rows_def columns_def row_transpose intro: set_eqI)
lemma columns_transpose: "columns(transpose (A::'a::semiring_1^_^_)) = rows A" by (metis transpose_transpose rows_transpose)
text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *}
lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
by (simp add: matrix_vector_mult_def inner_vector_def)
lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
by (simp add: matrix_vector_mult_def Cart_eq column_def mult_commute)
lemma vector_componentwise:
"(x::'a::ring_1^'n) = (\<chi> j. setsum (\<lambda>i. (x$i) * (cart_basis i :: 'a^'n)$j) (UNIV :: 'n set))"
apply (subst basis_expansion[symmetric])
by (vector Cart_eq setsum_component)
lemma linear_componentwise:
fixes f:: "real ^'m \<Rightarrow> real ^ _"
assumes lf: "linear f"
shows "(f x)$j = setsum (\<lambda>i. (x$i) * (f (cart_basis i)$j)) (UNIV :: 'm set)" (is "?lhs = ?rhs")
proof-
let ?M = "(UNIV :: 'm set)"
let ?N = "(UNIV :: 'n set)"
have fM: "finite ?M" by simp
have "?rhs = (setsum (\<lambda>i.(x$i) *\<^sub>R f (cart_basis i) ) ?M)$j"
unfolding vector_smult_component[symmetric] smult_conv_scaleR
unfolding setsum_component[of "(\<lambda>i.(x$i) *\<^sub>R f (cart_basis i :: real^'m))" ?M]
..
then show ?thesis unfolding linear_setsum_mul[OF lf fM, symmetric] basis_expansion' ..
qed
text{* Inverse matrices (not necessarily square) *}
definition "invertible(A::'a::semiring_1^'n^'m) \<longleftrightarrow> (\<exists>A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
definition "matrix_inv(A:: 'a::semiring_1^'n^'m) =
(SOME A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
text{* Correspondence between matrices and linear operators. *}
definition matrix:: "('a::{plus,times, one, zero}^'m \<Rightarrow> 'a ^ 'n) \<Rightarrow> 'a^'m^'n"
where "matrix f = (\<chi> i j. (f(cart_basis j))$i)"
lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::real ^ _))"
by (simp add: linear_def matrix_vector_mult_def Cart_eq field_simps setsum_right_distrib setsum_addf)
lemma matrix_works: assumes lf: "linear f" shows "matrix f *v x = f (x::real ^ 'n)"
apply (simp add: matrix_def matrix_vector_mult_def Cart_eq mult_commute)
apply clarify
apply (rule linear_componentwise[OF lf, symmetric])
done
lemma matrix_vector_mul: "linear f ==> f = (\<lambda>x. matrix f *v (x::real ^ 'n))" by (simp add: ext matrix_works)
lemma matrix_of_matrix_vector_mul: "matrix(\<lambda>x. A *v (x :: real ^ 'n)) = A"
by (simp add: matrix_eq matrix_vector_mul_linear matrix_works)
lemma matrix_compose:
assumes lf: "linear (f::real^'n \<Rightarrow> real^'m)"
and lg: "linear (g::real^'m \<Rightarrow> real^_)"
shows "matrix (g o f) = matrix g ** matrix f"
using lf lg linear_compose[OF lf lg] matrix_works[OF linear_compose[OF lf lg]]
by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def)
lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^_) *v x = setsum (\<lambda>i. (x$i) *s ((transpose A)$i)) (UNIV:: 'n set)"
by (simp add: matrix_vector_mult_def transpose_def Cart_eq mult_commute)
lemma adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
apply (rule adjoint_unique)
apply (simp add: transpose_def inner_vector_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
apply (subst setsum_commute)
apply (auto simp add: mult_ac)
done
lemma matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
shows "matrix(adjoint f) = transpose(matrix f)"
apply (subst matrix_vector_mul[OF lf])
unfolding adjoint_matrix matrix_of_matrix_vector_mul ..
section {* lambda skolemization on cartesian products *}
(* FIXME: rename do choice_cart *)
lemma lambda_skolem: "(\<forall>i. \<exists>x. P i x) \<longleftrightarrow>
(\<exists>x::'a ^ 'n. \<forall>i. P i (x $ i))" (is "?lhs \<longleftrightarrow> ?rhs")
proof-
let ?S = "(UNIV :: 'n set)"
{assume H: "?rhs"
then have ?lhs by auto}
moreover
{assume H: "?lhs"
then obtain f where f:"\<forall>i. P i (f i)" unfolding choice_iff by metis
let ?x = "(\<chi> i. (f i)) :: 'a ^ 'n"
{fix i
from f have "P i (f i)" by metis
then have "P i (?x $ i)" by auto
}
hence "\<forall>i. P i (?x$i)" by metis
hence ?rhs by metis }
ultimately show ?thesis by metis
qed
subsection {* Standard bases are a spanning set, and obviously finite. *}
lemma span_stdbasis:"span {cart_basis i :: real^'n | i. i \<in> (UNIV :: 'n set)} = UNIV"
apply (rule set_eqI)
apply auto
apply (subst basis_expansion'[symmetric])
apply (rule span_setsum)
apply simp
apply auto
apply (rule span_mul)
apply (rule span_superset)
apply (auto simp add: Collect_def mem_def)
done
lemma finite_stdbasis: "finite {cart_basis i ::real^'n |i. i\<in> (UNIV:: 'n set)}" (is "finite ?S")
proof-
have eq: "?S = cart_basis ` UNIV" by blast
show ?thesis unfolding eq by auto
qed
lemma card_stdbasis: "card {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)} = CARD('n)" (is "card ?S = _")
proof-
have eq: "?S = cart_basis ` UNIV" by blast
show ?thesis unfolding eq using card_image[OF basis_inj] by simp
qed
lemma independent_stdbasis_lemma:
assumes x: "(x::real ^ 'n) \<in> span (cart_basis ` S)"
and iS: "i \<notin> S"
shows "(x$i) = 0"
proof-
let ?U = "UNIV :: 'n set"
let ?B = "cart_basis ` S"
let ?P = "\<lambda>(x::real^_). \<forall>i\<in> ?U. i \<notin> S \<longrightarrow> x$i =0"
{fix x::"real^_" assume xS: "x\<in> ?B"
from xS have "?P x" by auto}
moreover
have "subspace ?P"
by (auto simp add: subspace_def Collect_def mem_def)
ultimately show ?thesis
using x span_induct[of ?B ?P x] iS by blast
qed
lemma independent_stdbasis: "independent {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)}"
proof-
let ?I = "UNIV :: 'n set"
let ?b = "cart_basis :: _ \<Rightarrow> real ^'n"
let ?B = "?b ` ?I"
have eq: "{?b i|i. i \<in> ?I} = ?B"
by auto
{assume d: "dependent ?B"
then obtain k where k: "k \<in> ?I" "?b k \<in> span (?B - {?b k})"
unfolding dependent_def by auto
have eq1: "?B - {?b k} = ?B - ?b ` {k}" by simp
have eq2: "?B - {?b k} = ?b ` (?I - {k})"
unfolding eq1
apply (rule inj_on_image_set_diff[symmetric])
apply (rule basis_inj) using k(1) by auto
from k(2) have th0: "?b k \<in> span (?b ` (?I - {k}))" unfolding eq2 .
from independent_stdbasis_lemma[OF th0, of k, simplified]
have False by simp}
then show ?thesis unfolding eq dependent_def ..
qed
lemma vector_sub_project_orthogonal_cart: "(b::real^'n) \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *s b) = 0"
unfolding inner_simps smult_conv_scaleR by auto
lemma linear_eq_stdbasis_cart:
assumes lf: "linear (f::real^'m \<Rightarrow> _)" and lg: "linear g"
and fg: "\<forall>i. f (cart_basis i) = g(cart_basis i)"
shows "f = g"
proof-
let ?U = "UNIV :: 'm set"
let ?I = "{cart_basis i:: real^'m|i. i \<in> ?U}"
{fix x assume x: "x \<in> (UNIV :: (real^'m) set)"
from equalityD2[OF span_stdbasis]
have IU: " (UNIV :: (real^'m) set) \<subseteq> span ?I" by blast
from linear_eq[OF lf lg IU] fg x
have "f x = g x" unfolding Collect_def Ball_def mem_def by metis}
then show ?thesis by (auto intro: ext)
qed
lemma bilinear_eq_stdbasis_cart:
assumes bf: "bilinear (f:: real^'m \<Rightarrow> real^'n \<Rightarrow> _)"
and bg: "bilinear g"
and fg: "\<forall>i j. f (cart_basis i) (cart_basis j) = g (cart_basis i) (cart_basis j)"
shows "f = g"
proof-
from fg have th: "\<forall>x \<in> {cart_basis i| i. i\<in> (UNIV :: 'm set)}. \<forall>y\<in> {cart_basis j |j. j \<in> (UNIV :: 'n set)}. f x y = g x y" by blast
from bilinear_eq[OF bf bg equalityD2[OF span_stdbasis] equalityD2[OF span_stdbasis] th] show ?thesis by (blast intro: ext)
qed
lemma left_invertible_transpose:
"(\<exists>(B). B ** transpose (A) = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). A ** B = mat 1)"
by (metis matrix_transpose_mul transpose_mat transpose_transpose)
lemma right_invertible_transpose:
"(\<exists>(B). transpose (A) ** B = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B). B ** A = mat 1)"
by (metis matrix_transpose_mul transpose_mat transpose_transpose)
lemma matrix_left_invertible_injective:
"(\<exists>B. (B::real^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x y. A *v x = A *v y \<longrightarrow> x = y)"
proof-
{fix B:: "real^'m^'n" and x y assume B: "B ** A = mat 1" and xy: "A *v x = A*v y"
from xy have "B*v (A *v x) = B *v (A*v y)" by simp
hence "x = y"
unfolding matrix_vector_mul_assoc B matrix_vector_mul_lid .}
moreover
{assume A: "\<forall>x y. A *v x = A *v y \<longrightarrow> x = y"
hence i: "inj (op *v A)" unfolding inj_on_def by auto
from linear_injective_left_inverse[OF matrix_vector_mul_linear i]
obtain g where g: "linear g" "g o op *v A = id" by blast
have "matrix g ** A = mat 1"
unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
using g(2) by (simp add: o_def id_def stupid_ext)
then have "\<exists>B. (B::real ^'m^'n) ** A = mat 1" by blast}
ultimately show ?thesis by blast
qed
lemma matrix_left_invertible_ker:
"(\<exists>B. (B::real ^'m^'n) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x. A *v x = 0 \<longrightarrow> x = 0)"
unfolding matrix_left_invertible_injective
using linear_injective_0[OF matrix_vector_mul_linear, of A]
by (simp add: inj_on_def)
lemma matrix_right_invertible_surjective:
"(\<exists>B. (A::real^'n^'m) ** (B::real^'m^'n) = mat 1) \<longleftrightarrow> surj (\<lambda>x. A *v x)"
proof-
{fix B :: "real ^'m^'n" assume AB: "A ** B = mat 1"
{fix x :: "real ^ 'm"
have "A *v (B *v x) = x"
by (simp add: matrix_vector_mul_lid matrix_vector_mul_assoc AB)}
hence "surj (op *v A)" unfolding surj_def by metis }
moreover
{assume sf: "surj (op *v A)"
from linear_surjective_right_inverse[OF matrix_vector_mul_linear sf]
obtain g:: "real ^'m \<Rightarrow> real ^'n" where g: "linear g" "op *v A o g = id"
by blast
have "A ** (matrix g) = mat 1"
unfolding matrix_eq matrix_vector_mul_lid
matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
using g(2) unfolding o_def stupid_ext[symmetric] id_def
.
hence "\<exists>B. A ** (B::real^'m^'n) = mat 1" by blast
}
ultimately show ?thesis unfolding surj_def by blast
qed
lemma matrix_left_invertible_independent_columns:
fixes A :: "real^'n^'m"
shows "(\<exists>(B::real ^'m^'n). B ** A = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s column i A) (UNIV :: 'n set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
(is "?lhs \<longleftrightarrow> ?rhs")
proof-
let ?U = "UNIV :: 'n set"
{assume k: "\<forall>x. A *v x = 0 \<longrightarrow> x = 0"
{fix c i assume c: "setsum (\<lambda>i. c i *s column i A) ?U = 0"
and i: "i \<in> ?U"
let ?x = "\<chi> i. c i"
have th0:"A *v ?x = 0"
using c
unfolding matrix_mult_vsum Cart_eq
by auto
from k[rule_format, OF th0] i
have "c i = 0" by (vector Cart_eq)}
hence ?rhs by blast}
moreover
{assume H: ?rhs
{fix x assume x: "A *v x = 0"
let ?c = "\<lambda>i. ((x$i ):: real)"
from H[rule_format, of ?c, unfolded matrix_mult_vsum[symmetric], OF x]
have "x = 0" by vector}}
ultimately show ?thesis unfolding matrix_left_invertible_ker by blast
qed
lemma matrix_right_invertible_independent_rows:
fixes A :: "real^'n^'m"
shows "(\<exists>(B::real^'m^'n). A ** B = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s row i A) (UNIV :: 'm set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
unfolding left_invertible_transpose[symmetric]
matrix_left_invertible_independent_columns
by (simp add: column_transpose)
lemma matrix_right_invertible_span_columns:
"(\<exists>(B::real ^'n^'m). (A::real ^'m^'n) ** B = mat 1) \<longleftrightarrow> span (columns A) = UNIV" (is "?lhs = ?rhs")
proof-
let ?U = "UNIV :: 'm set"
have fU: "finite ?U" by simp
have lhseq: "?lhs \<longleftrightarrow> (\<forall>y. \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y)"
unfolding matrix_right_invertible_surjective matrix_mult_vsum surj_def
apply (subst eq_commute) ..
have rhseq: "?rhs \<longleftrightarrow> (\<forall>x. x \<in> span (columns A))" by blast
{assume h: ?lhs
{fix x:: "real ^'n"
from h[unfolded lhseq, rule_format, of x] obtain y:: "real ^'m"
where y: "setsum (\<lambda>i. (y$i) *s column i A) ?U = x" by blast
have "x \<in> span (columns A)"
unfolding y[symmetric]
apply (rule span_setsum[OF fU])
apply clarify
unfolding smult_conv_scaleR
apply (rule span_mul)
apply (rule span_superset)
unfolding columns_def
by blast}
then have ?rhs unfolding rhseq by blast}
moreover
{assume h:?rhs
let ?P = "\<lambda>(y::real ^'n). \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y"
{fix y have "?P y"
proof(rule span_induct_alt[of ?P "columns A", folded smult_conv_scaleR])
show "\<exists>x\<Colon>real ^ 'm. setsum (\<lambda>i. (x$i) *s column i A) ?U = 0"
by (rule exI[where x=0], simp)
next
fix c y1 y2 assume y1: "y1 \<in> columns A" and y2: "?P y2"
from y1 obtain i where i: "i \<in> ?U" "y1 = column i A"
unfolding columns_def by blast
from y2 obtain x:: "real ^'m" where
x: "setsum (\<lambda>i. (x$i) *s column i A) ?U = y2" by blast
let ?x = "(\<chi> j. if j = i then c + (x$i) else (x$j))::real^'m"
show "?P (c*s y1 + y2)"
proof(rule exI[where x= "?x"], vector, auto simp add: i x[symmetric] if_distrib right_distrib cond_application_beta cong del: if_weak_cong)
fix j
have th: "\<forall>xa \<in> ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j)
else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))" using i(1)
by (simp add: field_simps)
have "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
else (x$xa) * ((column xa A$j))) ?U = setsum (\<lambda>xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U"
apply (rule setsum_cong[OF refl])
using th by blast
also have "\<dots> = setsum (\<lambda>xa. if xa = i then c * ((column i A)$j) else 0) ?U + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
by (simp add: setsum_addf)
also have "\<dots> = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
unfolding setsum_delta[OF fU]
using i(1) by simp
finally show "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" .
qed
next
show "y \<in> span (columns A)" unfolding h by blast
qed}
then have ?lhs unfolding lhseq ..}
ultimately show ?thesis by blast
qed
lemma matrix_left_invertible_span_rows:
"(\<exists>(B::real^'m^'n). B ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> span (rows A) = UNIV"
unfolding right_invertible_transpose[symmetric]
unfolding columns_transpose[symmetric]
unfolding matrix_right_invertible_span_columns
..
text {* The same result in terms of square matrices. *}
lemma matrix_left_right_inverse:
fixes A A' :: "real ^'n^'n"
shows "A ** A' = mat 1 \<longleftrightarrow> A' ** A = mat 1"
proof-
{fix A A' :: "real ^'n^'n" assume AA': "A ** A' = mat 1"
have sA: "surj (op *v A)"
unfolding surj_def
apply clarify
apply (rule_tac x="(A' *v y)" in exI)
by (simp add: matrix_vector_mul_assoc AA' matrix_vector_mul_lid)
from linear_surjective_isomorphism[OF matrix_vector_mul_linear sA]
obtain f' :: "real ^'n \<Rightarrow> real ^'n"
where f': "linear f'" "\<forall>x. f' (A *v x) = x" "\<forall>x. A *v f' x = x" by blast
have th: "matrix f' ** A = mat 1"
by (simp add: matrix_eq matrix_works[OF f'(1)] matrix_vector_mul_assoc[symmetric] matrix_vector_mul_lid f'(2)[rule_format])
hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp
hence "matrix f' = A'" by (simp add: matrix_mul_assoc[symmetric] AA' matrix_mul_rid matrix_mul_lid)
hence "matrix f' ** A = A' ** A" by simp
hence "A' ** A = mat 1" by (simp add: th)}
then show ?thesis by blast
qed
text {* Considering an n-element vector as an n-by-1 or 1-by-n matrix. *}
definition "rowvector v = (\<chi> i j. (v$j))"
definition "columnvector v = (\<chi> i j. (v$i))"
lemma transpose_columnvector:
"transpose(columnvector v) = rowvector v"
by (simp add: transpose_def rowvector_def columnvector_def Cart_eq)
lemma transpose_rowvector: "transpose(rowvector v) = columnvector v"
by (simp add: transpose_def columnvector_def rowvector_def Cart_eq)
lemma dot_rowvector_columnvector:
"columnvector (A *v v) = A ** columnvector v"
by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
lemma dot_matrix_product: "(x::real^'n) \<bullet> y = (((rowvector x ::real^'n^1) ** (columnvector y :: real^1^'n))$1)$1"
by (vector matrix_matrix_mult_def rowvector_def columnvector_def inner_vector_def)
lemma dot_matrix_vector_mul:
fixes A B :: "real ^'n ^'n" and x y :: "real ^'n"
shows "(A *v x) \<bullet> (B *v y) =
(((rowvector x :: real^'n^1) ** ((transpose A ** B) ** (columnvector y :: real ^1^'n)))$1)$1"
unfolding dot_matrix_product transpose_columnvector[symmetric]
dot_rowvector_columnvector matrix_transpose_mul matrix_mul_assoc ..
lemma infnorm_cart:"infnorm (x::real^'n) = Sup {abs(x$i) |i. i\<in> (UNIV :: 'n set)}"
unfolding infnorm_def apply(rule arg_cong[where f=Sup]) apply safe
apply(rule_tac x="\<pi> i" in exI) defer
apply(rule_tac x="\<pi>' i" in exI) unfolding nth_conv_component using pi'_range by auto
lemma infnorm_set_image_cart:
"{abs(x$i) |i. i\<in> (UNIV :: _ set)} =
(\<lambda>i. abs(x$i)) ` (UNIV)" by blast
lemma infnorm_set_lemma_cart:
shows "finite {abs((x::'a::abs ^'n)$i) |i. i\<in> (UNIV :: 'n set)}"
and "{abs(x$i) |i. i\<in> (UNIV :: 'n::finite set)} \<noteq> {}"
unfolding infnorm_set_image_cart
by auto
lemma component_le_infnorm_cart:
shows "\<bar>x$i\<bar> \<le> infnorm (x::real^'n)"
unfolding nth_conv_component
using component_le_infnorm[of x] .
instance cart :: (perfect_space, finite) perfect_space
proof
fix x :: "'a ^ 'b"
show "x islimpt UNIV"
apply (rule islimptI)
apply (unfold open_vector_def)
apply (drule (1) bspec)
apply clarsimp
apply (subgoal_tac "\<forall>i\<in>UNIV. \<exists>y. y \<in> A i \<and> y \<noteq> x $ i")
apply (drule finite_choice [OF finite_UNIV], erule exE)
apply (rule_tac x="Cart_lambda f" in exI)
apply (simp add: Cart_eq)
apply (rule ballI, drule_tac x=i in spec, clarify)
apply (cut_tac x="x $ i" in islimpt_UNIV)
apply (simp add: islimpt_def)
done
qed
lemma closed_positive_orthant: "closed {x::real^'n. \<forall>i. 0 \<le>x$i}"
proof-
let ?U = "UNIV :: 'n set"
let ?O = "{x::real^'n. \<forall>i. x$i\<ge>0}"
{fix x:: "real^'n" and i::'n assume H: "\<forall>e>0. \<exists>x'\<in>?O. x' \<noteq> x \<and> dist x' x < e"
and xi: "x$i < 0"
from xi have th0: "-x$i > 0" by arith
from H[rule_format, OF th0] obtain x' where x': "x' \<in>?O" "x' \<noteq> x" "dist x' x < -x $ i" by blast
have th:" \<And>b a (x::real). abs x <= b \<Longrightarrow> b <= a ==> ~(a + x < 0)" by arith
have th': "\<And>x (y::real). x < 0 \<Longrightarrow> 0 <= y ==> abs x <= abs (y - x)" by arith
have th1: "\<bar>x$i\<bar> \<le> \<bar>(x' - x)$i\<bar>" using x'(1) xi
apply (simp only: vector_component)
by (rule th') auto
have th2: "\<bar>dist x x'\<bar> \<ge> \<bar>(x' - x)$i\<bar>" using component_le_norm_cart[of "x'-x" i]
apply (simp add: dist_norm) by norm
from th[OF th1 th2] x'(3) have False by (simp add: dist_commute) }
then show ?thesis unfolding closed_limpt islimpt_approachable
unfolding not_le[symmetric] by blast
qed
lemma Lim_component_cart:
fixes f :: "'a \<Rightarrow> 'b::metric_space ^ 'n"
shows "(f ---> l) net \<Longrightarrow> ((\<lambda>a. f a $i) ---> l$i) net"
unfolding tendsto_iff
apply (clarify)
apply (drule spec, drule (1) mp)
apply (erule eventually_elim1)
apply (erule le_less_trans [OF dist_nth_le_cart])
done
lemma bounded_component_cart: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $ i) ` s)"
unfolding bounded_def
apply clarify
apply (rule_tac x="x $ i" in exI)
apply (rule_tac x="e" in exI)
apply clarify
apply (rule order_trans [OF dist_nth_le_cart], simp)
done
lemma compact_lemma_cart:
fixes f :: "nat \<Rightarrow> 'a::heine_borel ^ 'n"
assumes "bounded s" and "\<forall>n. f n \<in> s"
shows "\<forall>d.
\<exists>l r. subseq r \<and>
(\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
proof
fix d::"'n set" have "finite d" by simp
thus "\<exists>l::'a ^ 'n. \<exists>r. subseq r \<and>
(\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $ i) (l $ i) < e) sequentially)"
proof(induct d) case empty thus ?case unfolding subseq_def by auto
next case (insert k d)
have s': "bounded ((\<lambda>x. x $ k) ` s)" using `bounded s` by (rule bounded_component_cart)
obtain l1::"'a^'n" and r1 where r1:"subseq r1" and lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially"
using insert(3) by auto
have f': "\<forall>n. f (r1 n) $ k \<in> (\<lambda>x. x $ k) ` s" using `\<forall>n. f n \<in> s` by simp
obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) $ k) ---> l2) sequentially"
using bounded_imp_convergent_subsequence[OF s' f'] unfolding o_def by auto
def r \<equiv> "r1 \<circ> r2" have r:"subseq r"
using r1 and r2 unfolding r_def o_def subseq_def by auto
moreover
def l \<equiv> "(\<chi> i. if i = k then l2 else l1$i)::'a^'n"
{ fix e::real assume "e>0"
from lr1 `e>0` have N1:"eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $ i) (l1 $ i) < e) sequentially" by blast
from lr2 `e>0` have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) $ k) l2 < e) sequentially" by (rule tendstoD)
from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) $ i) (l1 $ i) < e) sequentially"
by (rule eventually_subseq)
have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) $ i) (l $ i) < e) sequentially"
using N1' N2 by (rule eventually_elim2, simp add: l_def r_def)
}
ultimately show ?case by auto
qed
qed
instance cart :: (heine_borel, finite) heine_borel
proof
fix s :: "('a ^ 'b) set" and f :: "nat \<Rightarrow> 'a ^ 'b"
assume s: "bounded s" and f: "\<forall>n. f n \<in> s"
then obtain l r where r: "subseq r"
and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $ i) (l $ i) < e) sequentially"
using compact_lemma_cart [OF s f] by blast
let ?d = "UNIV::'b set"
{ fix e::real assume "e>0"
hence "0 < e / (real_of_nat (card ?d))"
using zero_less_card_finite using divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto
with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))) sequentially"
by simp
moreover
{ fix n assume n: "\<forall>i. dist (f (r n) $ i) (l $ i) < e / (real_of_nat (card ?d))"
have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $ i) (l $ i))"
unfolding dist_vector_def using zero_le_dist by (rule setL2_le_setsum)
also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))"
by (rule setsum_strict_mono) (simp_all add: n)
finally have "dist (f (r n)) l < e" by simp
}
ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially"
by (rule eventually_elim1)
}
hence *:"((f \<circ> r) ---> l) sequentially" unfolding o_def tendsto_iff by simp
with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" by auto
qed
lemma continuous_at_component: "continuous (at a) (\<lambda>x. x $ i)"
unfolding continuous_at by (intro tendsto_intros)
lemma continuous_on_component: "continuous_on s (\<lambda>x. x $ i)"
unfolding continuous_on_def by (intro ballI tendsto_intros)
lemma interval_cart: fixes a :: "'a::ord^'n" shows
"{a <..< b} = {x::'a^'n. \<forall>i. a$i < x$i \<and> x$i < b$i}" and
"{a .. b} = {x::'a^'n. \<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i}"
by (auto simp add: set_eq_iff vector_less_def vector_le_def)
lemma mem_interval_cart: fixes a :: "'a::ord^'n" shows
"x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i. a$i < x$i \<and> x$i < b$i)"
"x \<in> {a .. b} \<longleftrightarrow> (\<forall>i. a$i \<le> x$i \<and> x$i \<le> b$i)"
using interval_cart[of a b] by(auto simp add: set_eq_iff vector_less_def vector_le_def)
lemma interval_eq_empty_cart: fixes a :: "real^'n" shows
"({a <..< b} = {} \<longleftrightarrow> (\<exists>i. b$i \<le> a$i))" (is ?th1) and
"({a .. b} = {} \<longleftrightarrow> (\<exists>i. b$i < a$i))" (is ?th2)
proof-
{ fix i x assume as:"b$i \<le> a$i" and x:"x\<in>{a <..< b}"
hence "a $ i < x $ i \<and> x $ i < b $ i" unfolding mem_interval_cart by auto
hence "a$i < b$i" by auto
hence False using as by auto }
moreover
{ assume as:"\<forall>i. \<not> (b$i \<le> a$i)"
let ?x = "(1/2) *\<^sub>R (a + b)"
{ fix i
have "a$i < b$i" using as[THEN spec[where x=i]] by auto
hence "a$i < ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i < b$i"
unfolding vector_smult_component and vector_add_component
by auto }
hence "{a <..< b} \<noteq> {}" using mem_interval_cart(1)[of "?x" a b] by auto }
ultimately show ?th1 by blast
{ fix i x assume as:"b$i < a$i" and x:"x\<in>{a .. b}"
hence "a $ i \<le> x $ i \<and> x $ i \<le> b $ i" unfolding mem_interval_cart by auto
hence "a$i \<le> b$i" by auto
hence False using as by auto }
moreover
{ assume as:"\<forall>i. \<not> (b$i < a$i)"
let ?x = "(1/2) *\<^sub>R (a + b)"
{ fix i
have "a$i \<le> b$i" using as[THEN spec[where x=i]] by auto
hence "a$i \<le> ((1/2) *\<^sub>R (a+b)) $ i" "((1/2) *\<^sub>R (a+b)) $ i \<le> b$i"
unfolding vector_smult_component and vector_add_component
by auto }
hence "{a .. b} \<noteq> {}" using mem_interval_cart(2)[of "?x" a b] by auto }
ultimately show ?th2 by blast
qed
lemma interval_ne_empty_cart: fixes a :: "real^'n" shows
"{a .. b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i \<le> b$i)" and
"{a <..< b} \<noteq> {} \<longleftrightarrow> (\<forall>i. a$i < b$i)"
unfolding interval_eq_empty_cart[of a b] by (auto simp add: not_less not_le)
(* BH: Why doesn't just "auto" work here? *)
lemma subset_interval_imp_cart: fixes a :: "real^'n" shows
"(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c .. d} \<subseteq> {a .. b}" and
"(\<forall>i. a$i < c$i \<and> d$i < b$i) \<Longrightarrow> {c .. d} \<subseteq> {a<..<b}" and
"(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a .. b}" and
"(\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i) \<Longrightarrow> {c<..<d} \<subseteq> {a<..<b}"
unfolding subset_eq[unfolded Ball_def] unfolding mem_interval_cart
by (auto intro: order_trans less_le_trans le_less_trans less_imp_le) (* BH: Why doesn't just "auto" work here? *)
lemma interval_sing: fixes a :: "'a::linorder^'n" shows
"{a .. a} = {a} \<and> {a<..<a} = {}"
apply(auto simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
apply (simp add: order_eq_iff)
apply (auto simp add: not_less less_imp_le)
done
lemma interval_open_subset_closed_cart: fixes a :: "'a::preorder^'n" shows
"{a<..<b} \<subseteq> {a .. b}"
proof(simp add: subset_eq, rule)
fix x
assume x:"x \<in>{a<..<b}"
{ fix i
have "a $ i \<le> x $ i"
using x order_less_imp_le[of "a$i" "x$i"]
by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
}
moreover
{ fix i
have "x $ i \<le> b $ i"
using x order_less_imp_le[of "x$i" "b$i"]
by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
}
ultimately
show "a \<le> x \<and> x \<le> b"
by(simp add: set_eq_iff vector_less_def vector_le_def Cart_eq)
qed
lemma subset_interval_cart: fixes a :: "real^'n" shows
"{c .. d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th1) and
"{c .. d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i \<le> d$i) --> (\<forall>i. a$i < c$i \<and> d$i < b$i)" (is ?th2) and
"{c<..<d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th3) and
"{c<..<d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i. c$i < d$i) --> (\<forall>i. a$i \<le> c$i \<and> d$i \<le> b$i)" (is ?th4)
using subset_interval[of c d a b] by (simp_all add: cart_simps real_euclidean_nth)
lemma disjoint_interval_cart: fixes a::"real^'n" shows
"{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i < c$i \<or> b$i < c$i \<or> d$i < a$i))" (is ?th1) and
"{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i < a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th2) and
"{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i < c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th3) and
"{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i. (b$i \<le> a$i \<or> d$i \<le> c$i \<or> b$i \<le> c$i \<or> d$i \<le> a$i))" (is ?th4)
using disjoint_interval[of a b c d] by (simp_all add: cart_simps real_euclidean_nth)
lemma inter_interval_cart: fixes a :: "'a::linorder^'n" shows
"{a .. b} \<inter> {c .. d} = {(\<chi> i. max (a$i) (c$i)) .. (\<chi> i. min (b$i) (d$i))}"
unfolding set_eq_iff and Int_iff and mem_interval_cart
by auto
lemma closed_interval_left_cart: fixes b::"real^'n"
shows "closed {x::real^'n. \<forall>i. x$i \<le> b$i}"
proof-
{ fix i
fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i. x $ i \<le> b $ i}. x' \<noteq> x \<and> dist x' x < e"
{ assume "x$i > b$i"
then obtain y where "y $ i \<le> b $ i" "y \<noteq> x" "dist y x < x$i - b$i" using x[THEN spec[where x="x$i - b$i"]] by auto
hence False using component_le_norm_cart[of "y - x" i] unfolding dist_norm and vector_minus_component by auto }
hence "x$i \<le> b$i" by(rule ccontr)auto }
thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
qed
lemma closed_interval_right_cart: fixes a::"real^'n"
shows "closed {x::real^'n. \<forall>i. a$i \<le> x$i}"
proof-
{ fix i
fix x::"real^'n" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i. a $ i \<le> x $ i}. x' \<noteq> x \<and> dist x' x < e"
{ assume "a$i > x$i"
then obtain y where "a $ i \<le> y $ i" "y \<noteq> x" "dist y x < a$i - x$i" using x[THEN spec[where x="a$i - x$i"]] by auto
hence False using component_le_norm_cart[of "y - x" i] unfolding dist_norm and vector_minus_component by auto }
hence "a$i \<le> x$i" by(rule ccontr)auto }
thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast
qed
lemma is_interval_cart:"is_interval (s::(real^'n) set) \<longleftrightarrow>
(\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i. ((a$i \<le> x$i \<and> x$i \<le> b$i) \<or> (b$i \<le> x$i \<and> x$i \<le> a$i))) \<longrightarrow> x \<in> s)"
unfolding is_interval_def Ball_def by (simp add: cart_simps real_euclidean_nth)
lemma closed_halfspace_component_le_cart:
shows "closed {x::real^'n. x$i \<le> a}"
using closed_halfspace_le[of "(cart_basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
lemma closed_halfspace_component_ge_cart:
shows "closed {x::real^'n. x$i \<ge> a}"
using closed_halfspace_ge[of a "(cart_basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
lemma open_halfspace_component_lt_cart:
shows "open {x::real^'n. x$i < a}"
using open_halfspace_lt[of "(cart_basis i)::real^'n" a] unfolding inner_basis[OF assms] by auto
lemma open_halfspace_component_gt_cart:
shows "open {x::real^'n. x$i > a}"
using open_halfspace_gt[of a "(cart_basis i)::real^'n"] unfolding inner_basis[OF assms] by auto
lemma Lim_component_le_cart: fixes f :: "'a \<Rightarrow> real^'n"
assumes "(f ---> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. f(x)$i \<le> b) net"
shows "l$i \<le> b"
proof-
{ fix x have "x \<in> {x::real^'n. inner (cart_basis i) x \<le> b} \<longleftrightarrow> x$i \<le> b" unfolding inner_basis by auto } note * = this
show ?thesis using Lim_in_closed_set[of "{x. inner (cart_basis i) x \<le> b}" f net l] unfolding *
using closed_halfspace_le[of "(cart_basis i)::real^'n" b] and assms(1,2,3) by auto
qed
lemma Lim_component_ge_cart: fixes f :: "'a \<Rightarrow> real^'n"
assumes "(f ---> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. b \<le> (f x)$i) net"
shows "b \<le> l$i"
proof-
{ fix x have "x \<in> {x::real^'n. inner (cart_basis i) x \<ge> b} \<longleftrightarrow> x$i \<ge> b" unfolding inner_basis by auto } note * = this
show ?thesis using Lim_in_closed_set[of "{x. inner (cart_basis i) x \<ge> b}" f net l] unfolding *
using closed_halfspace_ge[of b "(cart_basis i)::real^'n"] and assms(1,2,3) by auto
qed
lemma Lim_component_eq_cart: fixes f :: "'a \<Rightarrow> real^'n"
assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$i = b) net"
shows "l$i = b"
using ev[unfolded order_eq_iff eventually_and] using Lim_component_ge_cart[OF net, of b i] and
Lim_component_le_cart[OF net, of i b] by auto
lemma connected_ivt_component_cart: fixes x::"real^'n" shows
"connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$k \<le> a \<Longrightarrow> a \<le> y$k \<Longrightarrow> (\<exists>z\<in>s. z$k = a)"
using connected_ivt_hyperplane[of s x y "(cart_basis k)::real^'n" a] by (auto simp add: inner_basis)
lemma subspace_substandard_cart:
"subspace {x::real^_. (\<forall>i. P i \<longrightarrow> x$i = 0)}"
unfolding subspace_def by auto
lemma closed_substandard_cart:
"closed {x::real^'n. \<forall>i. P i --> x$i = 0}" (is "closed ?A")
proof-
let ?D = "{i. P i}"
let ?Bs = "{{x::real^'n. inner (cart_basis i) x = 0}| i. i \<in> ?D}"
{ fix x
{ assume "x\<in>?A"
hence x:"\<forall>i\<in>?D. x $ i = 0" by auto
hence "x\<in> \<Inter> ?Bs" by(auto simp add: inner_basis x) }
moreover
{ assume x:"x\<in>\<Inter>?Bs"
{ fix i assume i:"i \<in> ?D"
then obtain B where BB:"B \<in> ?Bs" and B:"B = {x::real^'n. inner (cart_basis i) x = 0}" by auto
hence "x $ i = 0" unfolding B using x unfolding inner_basis by auto }
hence "x\<in>?A" by auto }
ultimately have "x\<in>?A \<longleftrightarrow> x\<in> \<Inter>?Bs" .. }
hence "?A = \<Inter> ?Bs" by auto
thus ?thesis by(auto simp add: closed_Inter closed_hyperplane)
qed
lemma dim_substandard_cart:
shows "dim {x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0} = card d" (is "dim ?A = _")
proof- have *:"{x. \<forall>i<DIM((real, 'n) cart). i \<notin> \<pi>' ` d \<longrightarrow> x $$ i = 0} =
{x::real^'n. \<forall>i. i \<notin> d \<longrightarrow> x$i = 0}"apply safe
apply(erule_tac x="\<pi>' i" in allE) defer
apply(erule_tac x="\<pi> i" in allE)
unfolding image_iff real_euclidean_nth[symmetric] by (auto simp: pi'_inj[THEN inj_eq])
have " \<pi>' ` d \<subseteq> {..<DIM((real, 'n) cart)}" using pi'_range[where 'n='n] by auto
thus ?thesis using dim_substandard[of "\<pi>' ` d", where 'a="real^'n"]
unfolding * using card_image[of "\<pi>'" d] using pi'_inj unfolding inj_on_def by auto
qed
lemma affinity_inverses:
assumes m0: "m \<noteq> (0::'a::field)"
shows "(\<lambda>x. m *s x + c) o (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
"(\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) o (\<lambda>x. m *s x + c) = id"
using m0
apply (auto simp add: fun_eq_iff vector_add_ldistrib)
by (simp_all add: vector_smult_lneg[symmetric] vector_smult_assoc vector_sneg_minus1[symmetric])
lemma vector_affinity_eq:
assumes m0: "(m::'a::field) \<noteq> 0"
shows "m *s x + c = y \<longleftrightarrow> x = inverse m *s y + -(inverse m *s c)"
proof
assume h: "m *s x + c = y"
hence "m *s x = y - c" by (simp add: field_simps)
hence "inverse m *s (m *s x) = inverse m *s (y - c)" by simp
then show "x = inverse m *s y + - (inverse m *s c)"
using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
next
assume h: "x = inverse m *s y + - (inverse m *s c)"
show "m *s x + c = y" unfolding h diff_minus[symmetric]
using m0 by (simp add: vector_smult_assoc vector_ssub_ldistrib)
qed
lemma vector_eq_affinity:
"(m::'a::field) \<noteq> 0 ==> (y = m *s x + c \<longleftrightarrow> inverse(m) *s y + -(inverse(m) *s c) = x)"
using vector_affinity_eq[where m=m and x=x and y=y and c=c]
by metis
lemma const_vector_cart:"((\<chi> i. d)::real^'n) = (\<chi>\<chi> i. d)"
apply(subst euclidean_eq)
proof safe case goal1
hence *:"(basis i::real^'n) = cart_basis (\<pi> i)"
unfolding basis_real_n[THEN sym] by auto
have "((\<chi> i. d)::real^'n) $$ i = d" unfolding euclidean_component_def *
unfolding dot_basis by auto
thus ?case using goal1 by auto
qed
section "Convex Euclidean Space"
lemma Cart_1:"(1::real^'n) = (\<chi>\<chi> i. 1)"
apply(subst euclidean_eq)
proof safe case goal1 thus ?case using nth_conv_component[THEN sym,where i1="\<pi> i" and x1="1::real^'n"] by auto
qed
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_le_def Cart_lambda_beta basis_component vector_uminus_component
lemma convex_box_cart:
assumes "\<And>i. convex {x. P i x}"
shows "convex {x. \<forall>i. P i (x$i)}"
using assms unfolding convex_def by auto
lemma convex_positive_orthant_cart: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
by (rule convex_box_cart) (simp add: atLeast_def[symmetric] convex_real_interval)
lemma unit_interval_convex_hull_cart:
"{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
unfolding Cart_1 unit_interval_convex_hull[where 'a="real^'n"]
apply(rule arg_cong[where f="\<lambda>x. convex hull x"]) apply(rule set_eqI) unfolding mem_Collect_eq
apply safe apply(erule_tac x="\<pi>' i" in allE) unfolding nth_conv_component defer
apply(erule_tac x="\<pi> i" in allE) by auto
lemma cube_convex_hull_cart:
assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s"
proof- from cube_convex_hull[OF assms, where 'a="real^'n" and x=x] guess s . note s=this
show thesis apply(rule that[OF s(1)]) unfolding s(2)[THEN sym] const_vector_cart ..
qed
lemma std_simplex_cart:
"(insert (0::real^'n) { cart_basis i | i. i\<in>UNIV}) =
(insert 0 { basis i | i. i<DIM((real,'n) cart)})"
apply(rule arg_cong[where f="\<lambda>s. (insert 0 s)"])
unfolding basis_real_n[THEN sym] apply safe
apply(rule_tac x="\<pi>' i" in exI) defer
apply(rule_tac x="\<pi> i" in exI) using pi'_range[where 'n='n] by auto
subsection "Brouwer Fixpoint"
lemma kuhn_labelling_lemma_cart:
assumes "(\<forall>x::real^_. P x \<longrightarrow> P (f x))" "\<forall>x. P x \<longrightarrow> (\<forall>i. Q i \<longrightarrow> 0 \<le> x$i \<and> x$i \<le> 1)"
shows "\<exists>l. (\<forall>x i. l x i \<le> (1::nat)) \<and>
(\<forall>x i. P x \<and> Q i \<and> (x$i = 0) \<longrightarrow> (l x i = 0)) \<and>
(\<forall>x i. P x \<and> Q i \<and> (x$i = 1) \<longrightarrow> (l x i = 1)) \<and>
(\<forall>x i. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x$i \<le> f(x)$i) \<and>
(\<forall>x i. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x)$i \<le> x$i)" proof-
have and_forall_thm:"\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto
have *:"\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)" by auto
show ?thesis unfolding and_forall_thm apply(subst choice_iff[THEN sym])+ proof(rule,rule) case goal1
let ?R = "\<lambda>y. (P x \<and> Q xa \<and> x $ xa = 0 \<longrightarrow> y = (0::nat)) \<and>
(P x \<and> Q xa \<and> x $ xa = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x $ xa \<le> f x $ xa) \<and> (P x \<and> Q xa \<and> y = 1 \<longrightarrow> f x $ xa \<le> x $ xa)"
{ assume "P x" "Q xa" hence "0 \<le> f x $ xa \<and> f x $ xa \<le> 1" using assms(2)[rule_format,of "f x" xa]
apply(drule_tac assms(1)[rule_format]) by auto }
hence "?R 0 \<or> ?R 1" by auto thus ?case by auto qed qed
lemma interval_bij_cart:"interval_bij = (\<lambda> (a,b) (u,v) (x::real^'n).
(\<chi> i. u$i + (x$i - a$i) / (b$i - a$i) * (v$i - u$i))::real^'n)"
unfolding interval_bij_def apply(rule ext)+ apply safe
unfolding Cart_eq Cart_lambda_beta unfolding nth_conv_component
apply rule apply(subst euclidean_lambda_beta) using pi'_range by auto
lemma interval_bij_affine_cart:
"interval_bij (a,b) (u,v) = (\<lambda>x. (\<chi> i. (v$i - u$i) / (b$i - a$i) * x$i) +
(\<chi> i. u$i - (v$i - u$i) / (b$i - a$i) * a$i)::real^'n)"
apply rule unfolding Cart_eq interval_bij_cart vector_component_simps
by(auto simp add: field_simps add_divide_distrib[THEN sym])
subsection "Derivative"
lemma has_derivative_vmul_component_cart: fixes c::"real^'a \<Rightarrow> real^'b" and v::"real^'c"
assumes "(c has_derivative c') net"
shows "((\<lambda>x. c(x)$k *\<^sub>R v) has_derivative (\<lambda>x. (c' x)$k *\<^sub>R v)) net"
using has_derivative_vmul_component[OF assms]
unfolding nth_conv_component .
lemma differentiable_at_imp_differentiable_on: "(\<forall>x\<in>(s::(real^'n) set). f differentiable at x) \<Longrightarrow> f differentiable_on s"
unfolding differentiable_on_def by(auto intro!: differentiable_at_withinI)
definition "jacobian f net = matrix(frechet_derivative f net)"
lemma jacobian_works: "(f::(real^'a) \<Rightarrow> (real^'b)) differentiable net \<longleftrightarrow> (f has_derivative (\<lambda>h. (jacobian f net) *v h)) net"
apply rule unfolding jacobian_def apply(simp only: matrix_works[OF linear_frechet_derivative]) defer
apply(rule differentiableI) apply assumption unfolding frechet_derivative_works by assumption
subsection {* Component of the differential must be zero if it exists at a local *)
(* maximum or minimum for that corresponding component. *}
lemma differential_zero_maxmin_component: fixes f::"real^'a \<Rightarrow> real^'b"
assumes "0 < e" "((\<forall>y \<in> ball x e. (f y)$k \<le> (f x)$k) \<or> (\<forall>y\<in>ball x e. (f x)$k \<le> (f y)$k))"
"f differentiable (at x)" shows "jacobian f (at x) $ k = 0"
(* FIXME: reuse proof of generic differential_zero_maxmin_component*)
proof(rule ccontr)
def D \<equiv> "jacobian f (at x)" assume "jacobian f (at x) $ k \<noteq> 0"
then obtain j where j:"D$k$j \<noteq> 0" unfolding Cart_eq D_def by auto
hence *:"abs (jacobian f (at x) $ k $ j) / 2 > 0" unfolding D_def by auto
note as = assms(3)[unfolded jacobian_works has_derivative_at_alt]
guess e' using as[THEN conjunct2,rule_format,OF *] .. note e' = this
guess d using real_lbound_gt_zero[OF assms(1) e'[THEN conjunct1]] .. note d = this
{ fix c assume "abs c \<le> d"
hence *:"norm (x + c *\<^sub>R cart_basis j - x) < e'" using norm_basis[of j] d by auto
have "\<bar>(f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j)) $ k\<bar> \<le> norm (f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j))"
by(rule component_le_norm_cart)
also have "\<dots> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" using e'[THEN conjunct2,rule_format,OF *] and norm_basis[of j] unfolding D_def[symmetric] by auto
finally have "\<bar>(f (x + c *\<^sub>R cart_basis j) - f x - D *v (c *\<^sub>R cart_basis j)) $ k\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>" by simp
hence "\<bar>f (x + c *\<^sub>R cart_basis j) $ k - f x $ k - c * D $ k $ j\<bar> \<le> \<bar>D $ k $ j\<bar> / 2 * \<bar>c\<bar>"
unfolding vector_component_simps matrix_vector_mul_component unfolding smult_conv_scaleR[symmetric]
unfolding inner_simps dot_basis smult_conv_scaleR by simp } note * = this
have "x + d *\<^sub>R cart_basis j \<in> ball x e" "x - d *\<^sub>R cart_basis j \<in> ball x e"
unfolding mem_ball dist_norm using norm_basis[of j] d by auto
hence **:"((f (x - d *\<^sub>R cart_basis j))$k \<le> (f x)$k \<and> (f (x + d *\<^sub>R cart_basis j))$k \<le> (f x)$k) \<or>
((f (x - d *\<^sub>R cart_basis j))$k \<ge> (f x)$k \<and> (f (x + d *\<^sub>R cart_basis j))$k \<ge> (f x)$k)" using assms(2) by auto
have ***:"\<And>y y1 y2 d dx::real. (y1\<le>y\<and>y2\<le>y) \<or> (y\<le>y1\<and>y\<le>y2) \<Longrightarrow> d < abs dx \<Longrightarrow> abs(y1 - y - - dx) \<le> d \<Longrightarrow> (abs (y2 - y - dx) \<le> d) \<Longrightarrow> False" by arith
show False apply(rule ***[OF **, where dx="d * D $ k $ j" and d="\<bar>D $ k $ j\<bar> / 2 * \<bar>d\<bar>"])
using *[of "-d"] and *[of d] and d[THEN conjunct1] and j unfolding mult_minus_left
unfolding abs_mult diff_minus_eq_add scaleR.minus_left unfolding algebra_simps by (auto intro: mult_pos_pos)
qed
subsection {* Lemmas for working on @{typ "real^1"} *}
lemma forall_1[simp]: "(\<forall>i::1. P i) \<longleftrightarrow> P 1"
by (metis num1_eq_iff)
lemma ex_1[simp]: "(\<exists>x::1. P x) \<longleftrightarrow> P 1"
by auto (metis num1_eq_iff)
lemma exhaust_2:
fixes x :: 2 shows "x = 1 \<or> x = 2"
proof (induct x)
case (of_int z)
then have "0 <= z" and "z < 2" by simp_all
then have "z = 0 | z = 1" by arith
then show ?case by auto
qed
lemma forall_2: "(\<forall>i::2. P i) \<longleftrightarrow> P 1 \<and> P 2"
by (metis exhaust_2)
lemma exhaust_3:
fixes x :: 3 shows "x = 1 \<or> x = 2 \<or> x = 3"
proof (induct x)
case (of_int z)
then have "0 <= z" and "z < 3" by simp_all
then have "z = 0 \<or> z = 1 \<or> z = 2" by arith
then show ?case by auto
qed
lemma forall_3: "(\<forall>i::3. P i) \<longleftrightarrow> P 1 \<and> P 2 \<and> P 3"
by (metis exhaust_3)
lemma UNIV_1 [simp]: "UNIV = {1::1}"
by (auto simp add: num1_eq_iff)
lemma UNIV_2: "UNIV = {1::2, 2::2}"
using exhaust_2 by auto
lemma UNIV_3: "UNIV = {1::3, 2::3, 3::3}"
using exhaust_3 by auto
lemma setsum_1: "setsum f (UNIV::1 set) = f 1"
unfolding UNIV_1 by simp
lemma setsum_2: "setsum f (UNIV::2 set) = f 1 + f 2"
unfolding UNIV_2 by simp
lemma setsum_3: "setsum f (UNIV::3 set) = f 1 + f 2 + f 3"
unfolding UNIV_3 by (simp add: add_ac)
instantiation num1 :: cart_one begin
instance proof
show "CARD(1) = Suc 0" by auto
qed end
(* "lift" from 'a to 'a^1 and "drop" from 'a^1 to 'a -- FIXME: potential use of transfer *)
abbreviation vec1:: "'a \<Rightarrow> 'a ^ 1" where "vec1 x \<equiv> vec x"
abbreviation dest_vec1:: "'a ^1 \<Rightarrow> 'a"
where "dest_vec1 x \<equiv> (x$1)"
lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" "dest_vec1(vec1 y) = y"
by (simp_all add: Cart_eq)
lemma vec1_component[simp]: "(vec1 x)$1 = x"
by (simp_all add: Cart_eq)
declare vec1_dest_vec1(1) [simp]
lemma forall_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (vec1 x))"
by (metis vec1_dest_vec1(1))
lemma exists_vec1: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. P(vec1 x))"
by (metis vec1_dest_vec1(1))
lemma vec1_eq[simp]: "vec1 x = vec1 y \<longleftrightarrow> x = y"
by (metis vec1_dest_vec1(2))
lemma dest_vec1_eq[simp]: "dest_vec1 x = dest_vec1 y \<longleftrightarrow> x = y"
by (metis vec1_dest_vec1(1))
subsection{* The collapse of the general concepts to dimension one. *}
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
by (simp add: Cart_eq)
lemma forall_one: "(\<forall>(x::'a ^1). P x) \<longleftrightarrow> (\<forall>x. P(\<chi> i. x))"
apply auto
apply (erule_tac x= "x$1" in allE)
apply (simp only: vector_one[symmetric])
done
lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)"
by (simp add: norm_vector_def)
lemma norm_real: "norm(x::real ^ 1) = abs(x$1)"
by (simp add: norm_vector_1)
lemma dist_real: "dist(x::real ^ 1) y = abs((x$1) - (y$1))"
by (auto simp add: norm_real dist_norm)
subsection{* Explicit vector construction from lists. *}
definition "vector l = (\<chi> i. foldr (\<lambda>x f n. fun_upd (f (n+1)) n x) l (\<lambda>n x. 0) 1 i)"
lemma vector_1: "(vector[x]) $1 = x"
unfolding vector_def by simp
lemma vector_2:
"(vector[x,y]) $1 = x"
"(vector[x,y] :: 'a^2)$2 = (y::'a::zero)"
unfolding vector_def by simp_all
lemma vector_3:
"(vector [x,y,z] ::('a::zero)^3)$1 = x"
"(vector [x,y,z] ::('a::zero)^3)$2 = y"
"(vector [x,y,z] ::('a::zero)^3)$3 = z"
unfolding vector_def by simp_all
lemma forall_vector_1: "(\<forall>v::'a::zero^1. P v) \<longleftrightarrow> (\<forall>x. P(vector[x]))"
apply auto
apply (erule_tac x="v$1" in allE)
apply (subgoal_tac "vector [v$1] = v")
apply simp
apply (vector vector_def)
apply simp
done
lemma forall_vector_2: "(\<forall>v::'a::zero^2. P v) \<longleftrightarrow> (\<forall>x y. P(vector[x, y]))"
apply auto
apply (erule_tac x="v$1" in allE)
apply (erule_tac x="v$2" in allE)
apply (subgoal_tac "vector [v$1, v$2] = v")
apply simp
apply (vector vector_def)
apply (simp add: forall_2)
done
lemma forall_vector_3: "(\<forall>v::'a::zero^3. P v) \<longleftrightarrow> (\<forall>x y z. P(vector[x, y, z]))"
apply auto
apply (erule_tac x="v$1" in allE)
apply (erule_tac x="v$2" in allE)
apply (erule_tac x="v$3" in allE)
apply (subgoal_tac "vector [v$1, v$2, v$3] = v")
apply simp
apply (vector vector_def)
apply (simp add: forall_3)
done
lemma range_vec1[simp]:"range vec1 = UNIV" apply(rule set_eqI,rule) unfolding image_iff defer
apply(rule_tac x="dest_vec1 x" in bexI) by auto
lemma dest_vec1_lambda: "dest_vec1(\<chi> i. x i) = x 1"
by (simp)
lemma dest_vec1_vec: "dest_vec1(vec x) = x"
by (simp)
lemma dest_vec1_sum: assumes fS: "finite S"
shows "dest_vec1(setsum f S) = setsum (dest_vec1 o f) S"
apply (induct rule: finite_induct[OF fS])
apply simp
apply auto
done
lemma norm_vec1 [simp]: "norm(vec1 x) = abs(x)"
by (simp add: vec_def norm_real)
lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)"
by (simp only: dist_real vec1_component)
lemma abs_dest_vec1: "norm x = \<bar>dest_vec1 x\<bar>"
by (metis vec1_dest_vec1(1) norm_vec1)
lemmas vec1_dest_vec1_simps = forall_vec1 vec_add[THEN sym] dist_vec1 vec_sub[THEN sym] vec1_dest_vec1 norm_vec1 vector_smult_component
vec1_eq vec_cmul[THEN sym] smult_conv_scaleR[THEN sym] o_def dist_real_def norm_vec1 real_norm_def
lemma bounded_linear_vec1:"bounded_linear (vec1::real\<Rightarrow>real^1)"
unfolding bounded_linear_def additive_def bounded_linear_axioms_def
unfolding smult_conv_scaleR[THEN sym] unfolding vec1_dest_vec1_simps
apply(rule conjI) defer apply(rule conjI) defer apply(rule_tac x=1 in exI) by auto
lemma linear_vmul_dest_vec1:
fixes f:: "real^_ \<Rightarrow> real^1"
shows "linear f \<Longrightarrow> linear (\<lambda>x. dest_vec1(f x) *s v)"
unfolding smult_conv_scaleR
by (rule linear_vmul_component)
lemma linear_from_scalars:
assumes lf: "linear (f::real^1 \<Rightarrow> real^_)"
shows "f = (\<lambda>x. dest_vec1 x *s column 1 (matrix f))"
unfolding smult_conv_scaleR
apply (rule ext)
apply (subst matrix_works[OF lf, symmetric])
apply (auto simp add: Cart_eq matrix_vector_mult_def column_def mult_commute)
done
lemma linear_to_scalars: assumes lf: "linear (f::real ^'n \<Rightarrow> real^1)"
shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))"
apply (rule ext)
apply (subst matrix_works[OF lf, symmetric])
apply (simp add: Cart_eq matrix_vector_mult_def row_def inner_vector_def mult_commute)
done
lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0"
by (simp add: dest_vec1_eq[symmetric])
lemma setsum_scalars: assumes fS: "finite S"
shows "setsum f S = vec1 (setsum (dest_vec1 o f) S)"
unfolding vec_setsum[OF fS] by simp
lemma dest_vec1_wlog_le: "(\<And>(x::'a::linorder ^ 1) y. P x y \<longleftrightarrow> P y x) \<Longrightarrow> (\<And>x y. dest_vec1 x <= dest_vec1 y ==> P x y) \<Longrightarrow> P x y"
apply (cases "dest_vec1 x \<le> dest_vec1 y")
apply simp
apply (subgoal_tac "dest_vec1 y \<le> dest_vec1 x")
apply (auto)
done
text{* Lifting and dropping *}
lemma continuous_on_o_dest_vec1: fixes f::"real \<Rightarrow> 'a::real_normed_vector"
assumes "continuous_on {a..b::real} f" shows "continuous_on {vec1 a..vec1 b} (f o dest_vec1)"
using assms unfolding continuous_on_iff apply safe
apply(erule_tac x="x$1" in ballE,erule_tac x=e in allE) apply safe
apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real
apply(erule_tac x="dest_vec1 x'" in ballE) by(auto simp add:vector_le_def)
lemma continuous_on_o_vec1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector"
assumes "continuous_on {a..b} f" shows "continuous_on {dest_vec1 a..dest_vec1 b} (f o vec1)"
using assms unfolding continuous_on_iff apply safe
apply(erule_tac x="vec x" in ballE,erule_tac x=e in allE) apply safe
apply(rule_tac x=d in exI) apply safe unfolding o_def dist_real_def dist_real
apply(erule_tac x="vec1 x'" in ballE) by(auto simp add:vector_le_def)
lemma continuous_on_vec1:"continuous_on A (vec1::real\<Rightarrow>real^1)"
by(rule linear_continuous_on[OF bounded_linear_vec1])
lemma mem_interval_1: fixes x :: "real^1" shows
"(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
"(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
by(simp_all add: Cart_eq vector_less_def vector_le_def)
lemma vec1_interval:fixes a::"real" shows
"vec1 ` {a .. b} = {vec1 a .. vec1 b}"
"vec1 ` {a<..<b} = {vec1 a<..<vec1 b}"
apply(rule_tac[!] set_eqI) unfolding image_iff vector_less_def unfolding mem_interval_cart
unfolding forall_1 unfolding vec1_dest_vec1_simps
apply rule defer apply(rule_tac x="dest_vec1 x" in bexI) prefer 3 apply rule defer
apply(rule_tac x="dest_vec1 x" in bexI) by auto
(* Some special cases for intervals in R^1. *)
lemma interval_cases_1: fixes x :: "real^1" shows
"x \<in> {a .. b} ==> x \<in> {a<..<b} \<or> (x = a) \<or> (x = b)"
unfolding Cart_eq vector_less_def vector_le_def mem_interval_cart by(auto simp del:dest_vec1_eq)
lemma in_interval_1: fixes x :: "real^1" shows
"(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b) \<and>
(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
unfolding Cart_eq vector_less_def vector_le_def mem_interval_cart by(auto simp del:dest_vec1_eq)
lemma interval_eq_empty_1: fixes a :: "real^1" shows
"{a .. b} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a"
"{a<..<b} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
unfolding interval_eq_empty_cart and ex_1 by auto
lemma subset_interval_1: fixes a :: "real^1" shows
"({a .. b} \<subseteq> {c .. d} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or>
dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
"({a .. b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or>
dest_vec1 c < dest_vec1 a \<and> dest_vec1 a \<le> dest_vec1 b \<and> dest_vec1 b < dest_vec1 d)"
"({a<..<b} \<subseteq> {c .. d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or>
dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
"({a<..<b} \<subseteq> {c<..<d} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or>
dest_vec1 c \<le> dest_vec1 a \<and> dest_vec1 a < dest_vec1 b \<and> dest_vec1 b \<le> dest_vec1 d)"
unfolding subset_interval_cart[of a b c d] unfolding forall_1 by auto
lemma eq_interval_1: fixes a :: "real^1" shows
"{a .. b} = {c .. d} \<longleftrightarrow>
dest_vec1 b < dest_vec1 a \<and> dest_vec1 d < dest_vec1 c \<or>
dest_vec1 a = dest_vec1 c \<and> dest_vec1 b = dest_vec1 d"
unfolding set_eq_subset[of "{a .. b}" "{c .. d}"]
unfolding subset_interval_1(1)[of a b c d]
unfolding subset_interval_1(1)[of c d a b]
by auto
lemma disjoint_interval_1: fixes a :: "real^1" shows
"{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d < dest_vec1 c \<or> dest_vec1 b < dest_vec1 c \<or> dest_vec1 d < dest_vec1 a"
"{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b < dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c \<or> dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
"{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d < dest_vec1 c \<or> dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
"{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a \<or> dest_vec1 d \<le> dest_vec1 c \<or> dest_vec1 b \<le> dest_vec1 c \<or> dest_vec1 d \<le> dest_vec1 a"
unfolding disjoint_interval_cart and ex_1 by auto
lemma open_closed_interval_1: fixes a :: "real^1" shows
"{a<..<b} = {a .. b} - {a, b}"
unfolding set_eq_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
lemma closed_open_interval_1: "dest_vec1 (a::real^1) \<le> dest_vec1 b ==> {a .. b} = {a<..<b} \<union> {a,b}"
unfolding set_eq_iff apply simp unfolding vector_less_def and vector_le_def and forall_1 and dest_vec1_eq[THEN sym] by(auto simp del:dest_vec1_eq)
lemma Lim_drop_le: fixes f :: "'a \<Rightarrow> real^1" shows
"(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. dest_vec1 (f x) \<le> b) net ==> dest_vec1 l \<le> b"
using Lim_component_le_cart[of f l net 1 b] by auto
lemma Lim_drop_ge: fixes f :: "'a \<Rightarrow> real^1" shows
"(f ---> l) net \<Longrightarrow> ~(trivial_limit net) \<Longrightarrow> eventually (\<lambda>x. b \<le> dest_vec1 (f x)) net ==> b \<le> dest_vec1 l"
using Lim_component_ge_cart[of f l net b 1] by auto
text{* Also more convenient formulations of monotone convergence. *}
lemma bounded_increasing_convergent: fixes s::"nat \<Rightarrow> real^1"
assumes "bounded {s n| n::nat. True}" "\<forall>n. dest_vec1(s n) \<le> dest_vec1(s(Suc n))"
shows "\<exists>l. (s ---> l) sequentially"
proof-
obtain a where a:"\<forall>n. \<bar>dest_vec1 (s n)\<bar> \<le> a" using assms(1)[unfolded bounded_iff abs_dest_vec1] by auto
{ fix m::nat
have "\<And> n. n\<ge>m \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)"
apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) by(auto simp add: not_less_eq_eq) }
hence "\<forall>m n. m \<le> n \<longrightarrow> dest_vec1 (s m) \<le> dest_vec1 (s n)" by auto
then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar>dest_vec1 (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] unfolding monoseq_def by auto
thus ?thesis unfolding Lim_sequentially apply(rule_tac x="vec1 l" in exI)
unfolding dist_norm unfolding abs_dest_vec1 by auto
qed
lemma dest_vec1_simps[simp]: fixes a::"real^1"
shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*)
"a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1"
by(auto simp add: vector_le_def Cart_eq)
lemma dest_vec1_inverval:
"dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}"
"dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}"
"dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}"
"dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}"
apply(rule_tac [!] equalityI)
unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff
apply(rule_tac [!] allI)apply(rule_tac [!] impI)
apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI)
apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI)
by (auto simp add: vector_less_def vector_le_def)
lemma dest_vec1_setsum: assumes "finite S"
shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S"
using dest_vec1_sum[OF assms] by auto
lemma open_dest_vec1_vimage: "open S \<Longrightarrow> open (dest_vec1 -` S)"
unfolding open_vector_def forall_1 by auto
lemma tendsto_dest_vec1 [tendsto_intros]:
"(f ---> l) net \<Longrightarrow> ((\<lambda>x. dest_vec1 (f x)) ---> dest_vec1 l) net"
by(rule tendsto_Cart_nth)
lemma continuous_dest_vec1: "continuous net f \<Longrightarrow> continuous net (\<lambda>x. dest_vec1 (f x))"
unfolding continuous_def by (rule tendsto_dest_vec1)
lemma forall_dest_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P(dest_vec1 x))"
apply safe defer apply(erule_tac x="vec1 x" in allE) by auto
lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)"
apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto
lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)"
apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule
apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto
lemma dist_vec1_0[simp]: "dist(vec1 (x::real)) 0 = norm x" unfolding dist_norm by auto
lemma bounded_linear_vec1_dest_vec1: fixes f::"real \<Rightarrow> real"
shows "linear (vec1 \<circ> f \<circ> dest_vec1) = bounded_linear f" (is "?l = ?r") proof-
{ assume ?l guess K using linear_bounded[OF `?l`] ..
hence "\<exists>K. \<forall>x. \<bar>f x\<bar> \<le> \<bar>x\<bar> * K" apply(rule_tac x=K in exI)
unfolding vec1_dest_vec1_simps by (auto simp add:field_simps) }
thus ?thesis unfolding linear_def bounded_linear_def additive_def bounded_linear_axioms_def o_def
unfolding vec1_dest_vec1_simps by auto qed
lemma vec1_le[simp]:fixes a::real shows "vec1 a \<le> vec1 b \<longleftrightarrow> a \<le> b"
unfolding vector_le_def by auto
lemma vec1_less[simp]:fixes a::real shows "vec1 a < vec1 b \<longleftrightarrow> a < b"
unfolding vector_less_def by auto
subsection {* Derivatives on real = Derivatives on @{typ "real^1"} *}
lemma has_derivative_within_vec1_dest_vec1: fixes f::"real\<Rightarrow>real" shows
"((vec1 \<circ> f \<circ> dest_vec1) has_derivative (vec1 \<circ> f' \<circ> dest_vec1)) (at (vec1 x) within vec1 ` s)
= (f has_derivative f') (at x within s)"
unfolding has_derivative_within unfolding bounded_linear_vec1_dest_vec1[unfolded linear_conv_bounded_linear]
unfolding o_def Lim_within Ball_def unfolding forall_vec1
unfolding vec1_dest_vec1_simps dist_vec1_0 image_iff by auto
lemma has_derivative_at_vec1_dest_vec1: fixes f::"real\<Rightarrow>real" shows
"((vec1 \<circ> f \<circ> dest_vec1) has_derivative (vec1 \<circ> f' \<circ> dest_vec1)) (at (vec1 x)) = (f has_derivative f') (at x)"
using has_derivative_within_vec1_dest_vec1[where s=UNIV, unfolded range_vec1 within_UNIV] by auto
lemma bounded_linear_vec1': fixes f::"'a::real_normed_vector\<Rightarrow>real"
shows "bounded_linear f = bounded_linear (vec1 \<circ> f)"
unfolding bounded_linear_def additive_def bounded_linear_axioms_def o_def
unfolding vec1_dest_vec1_simps by auto
lemma bounded_linear_dest_vec1: fixes f::"real\<Rightarrow>'a::real_normed_vector"
shows "bounded_linear f = bounded_linear (f \<circ> dest_vec1)"
unfolding bounded_linear_def additive_def bounded_linear_axioms_def o_def
unfolding vec1_dest_vec1_simps by auto
lemma has_derivative_at_vec1: fixes f::"'a::real_normed_vector\<Rightarrow>real" shows
"(f has_derivative f') (at x) = ((vec1 \<circ> f) has_derivative (vec1 \<circ> f')) (at x)"
unfolding has_derivative_at unfolding bounded_linear_vec1'[unfolded linear_conv_bounded_linear]
unfolding o_def Lim_at unfolding vec1_dest_vec1_simps dist_vec1_0 by auto
lemma has_derivative_within_dest_vec1:fixes f::"real\<Rightarrow>'a::real_normed_vector" shows
"((f \<circ> dest_vec1) has_derivative (f' \<circ> dest_vec1)) (at (vec1 x) within vec1 ` s) = (f has_derivative f') (at x within s)"
unfolding has_derivative_within bounded_linear_dest_vec1 unfolding o_def Lim_within Ball_def
unfolding vec1_dest_vec1_simps dist_vec1_0 image_iff by auto
lemma has_derivative_at_dest_vec1:fixes f::"real\<Rightarrow>'a::real_normed_vector" shows
"((f \<circ> dest_vec1) has_derivative (f' \<circ> dest_vec1)) (at (vec1 x)) = (f has_derivative f') (at x)"
using has_derivative_within_dest_vec1[where s=UNIV] by(auto simp add:within_UNIV)
subsection {* In particular if we have a mapping into @{typ "real^1"}. *}
lemma onorm_vec1: fixes f::"real \<Rightarrow> real"
shows "onorm (\<lambda>x. vec1 (f (dest_vec1 x))) = onorm f" proof-
have "\<forall>x::real^1. norm x = 1 \<longleftrightarrow> x\<in>{vec1 -1, vec1 (1::real)}" unfolding forall_vec1 by(auto simp add:Cart_eq)
hence 1:"{x. norm x = 1} = {vec1 -1, vec1 (1::real)}" by auto
have 2:"{norm (vec1 (f (dest_vec1 x))) |x. norm x = 1} = (\<lambda>x. norm (vec1 (f (dest_vec1 x)))) ` {x. norm x=1}" by auto
have "\<forall>x::real. norm x = 1 \<longleftrightarrow> x\<in>{-1, 1}" by auto hence 3:"{x. norm x = 1} = {-1, (1::real)}" by auto
have 4:"{norm (f x) |x. norm x = 1} = (\<lambda>x. norm (f x)) ` {x. norm x=1}" by auto
show ?thesis unfolding onorm_def 1 2 3 4 by(simp add:Sup_finite_Max) qed
lemma convex_vec1:"convex (vec1 ` s) = convex (s::real set)"
unfolding convex_def Ball_def forall_vec1 unfolding vec1_dest_vec1_simps image_iff by auto
lemma bounded_linear_component_cart[intro]: "bounded_linear (\<lambda>x::real^'n. x $ k)"
apply(rule bounded_linearI[where K=1])
using component_le_norm_cart[of _ k] unfolding real_norm_def by auto
lemma bounded_vec1[intro]: "bounded s \<Longrightarrow> bounded (vec1 ` (s::real set))"
unfolding bounded_def apply safe apply(rule_tac x="vec1 x" in exI,rule_tac x=e in exI)
by(auto simp add: dist_real dist_real_def)
(*lemma content_closed_interval_cases_cart:
"content {a..b::real^'n} =
(if {a..b} = {} then 0 else setprod (\<lambda>i. b$i - a$i) UNIV)"
proof(cases "{a..b} = {}")
case True thus ?thesis unfolding content_def by auto
next case Falsethus ?thesis unfolding content_def unfolding if_not_P[OF False]
proof(cases "\<forall>i. a $ i \<le> b $ i")
case False thus ?thesis unfolding content_def using t by auto
next case True note interval_eq_empty
apply auto
sorry*)
lemma integral_component_eq_cart[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real^'m"
assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $ k) = integral s f $ k"
using integral_linear[OF assms(1) bounded_linear_component_cart,unfolded o_def] .
lemma interval_split_cart:
"{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
"{a..b} \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"
apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval_cart mem_Collect_eq
unfolding Cart_lambda_beta by auto
(*lemma content_split_cart:
"content {a..b::real^'n} = content({a..b} \<inter> {x. x$k \<le> c}) + content({a..b} \<inter> {x. x$k >= c})"
proof- note simps = interval_split_cart content_closed_interval_cases_cart Cart_lambda_beta vector_le_def
{ presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps by auto }
have *:"UNIV = insert k (UNIV - {k})" "\<And>x. finite (UNIV-{x::'n})" "\<And>x. x\<notin>UNIV-{x}" by auto
have *:"\<And>X Y Z. (\<Prod>i\<in>UNIV. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>UNIV-{k}. Z i (Y i))"
"(\<Prod>i\<in>UNIV. b$i - a$i) = (\<Prod>i\<in>UNIV-{k}. b$i - a$i) * (b$k - a$k)"
apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto
assume as:"a\<le>b" moreover have "\<And>x. min (b $ k) c = max (a $ k) c
\<Longrightarrow> x* (b$k - a$k) = x*(max (a $ k) c - a $ k) + x*(b $ k - max (a $ k) c)"
by (auto simp add:field_simps)
moreover have "\<not> a $ k \<le> c \<Longrightarrow> \<not> c \<le> b $ k \<Longrightarrow> False"
unfolding not_le using as[unfolded vector_le_def,rule_format,of k] by auto
ultimately show ?thesis
unfolding simps unfolding *(1)[of "\<lambda>i x. b$i - x"] *(1)[of "\<lambda>i x. x - a$i"] *(2) by(auto)
qed*)
lemma has_integral_vec1: assumes "(f has_integral k) {a..b}"
shows "((\<lambda>x. vec1 (f x)) has_integral (vec1 k)) {a..b}"
proof- have *:"\<And>p. (\<Sum>(x, k)\<in>p. content k *\<^sub>R vec1 (f x)) - vec1 k = vec1 ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k)"
unfolding vec_sub Cart_eq by(auto simp add: split_beta)
show ?thesis using assms unfolding has_integral apply safe
apply(erule_tac x=e in allE,safe) apply(rule_tac x=d in exI,safe)
apply(erule_tac x=p in allE,safe) unfolding * norm_vector_1 by auto qed
end