(*  Title:      HOL/NatDef.thy
    ID:         $Id$
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
    Copyright   1991  University of Cambridge
Definition of types ind and nat.
Type nat is defined as a set Nat over type ind.
*)
NatDef = Wellfounded_Recursion +
(** type ind **)
global
types
  ind
arities
  ind :: term
consts
  Zero_Rep      :: ind
  Suc_Rep       :: ind => ind
rules
  (*the axiom of infinity in 2 parts*)
  inj_Suc_Rep           "inj(Suc_Rep)"
  Suc_Rep_not_Zero_Rep  "Suc_Rep(x) ~= Zero_Rep"
(** type nat **)
(* type definition *)
typedef (Nat)
  nat = "lfp(%X. {Zero_Rep} Un (Suc_Rep`X))"   (lfp_def)
instance
  nat :: {ord, zero}
(* abstract constants and syntax *)
consts
  Suc       :: nat => nat
  pred_nat  :: "(nat * nat) set"
syntax
  "1"       :: nat                ("1")
  "2"       :: nat                ("2")
translations
  "1"  == "Suc 0"
  "2"  == "Suc 1"
local
defs
  Zero_def      "0 == Abs_Nat(Zero_Rep)"
  Suc_def       "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))"
  (*nat operations*)
  pred_nat_def  "pred_nat == {(m,n). n = Suc m}"
  less_def      "m<n == (m,n):trancl(pred_nat)"
  le_def        "m<=(n::nat) == ~(n<m)"
end