src/HOL/Tools/Nitpick/minipick.ML
author haftmann
Fri, 30 Oct 2009 18:33:21 +0100
changeset 33367 2912bf1871ba
parent 33232 f93390060bbe
child 33980 a28733ef3a82
permissions -rw-r--r--
merged

(*  Title:      HOL/Nitpick/Tools/minipick.ML
    Author:     Jasmin Blanchette, TU Muenchen
    Copyright   2009

Finite model generation for HOL formulas using Kodkod, minimalistic version.
*)

signature MINIPICK =
sig
  val pick_nits_in_term : Proof.context -> (typ -> int) -> term -> string
end;

structure Minipick : MINIPICK =
struct

open Kodkod
open Nitpick_Util
open Nitpick_HOL
open Nitpick_Peephole
open Nitpick_Kodkod

(* theory -> typ -> unit *)
fun check_type ctxt (Type ("fun", Ts)) = List.app (check_type ctxt) Ts
  | check_type ctxt (Type ("*", Ts)) = List.app (check_type ctxt) Ts
  | check_type _ @{typ bool} = ()
  | check_type _ (TFree (_, @{sort "{}"})) = ()
  | check_type _ (TFree (_, @{sort HOL.type})) = ()
  | check_type ctxt T =
    raise NOT_SUPPORTED ("type " ^ quote (Syntax.string_of_typ ctxt T))

(* (typ -> int) -> typ -> int *)
fun atom_schema_of_one scope (Type ("fun", [T1, T2])) =
    replicate_list (scope T1) (atom_schema_of_one scope T2)
  | atom_schema_of_one scope (Type ("*", [T1, T2])) =
    atom_schema_of_one scope T1 @ atom_schema_of_one scope T2
  | atom_schema_of_one scope T = [scope T]
fun atom_schema_of_set scope (Type ("fun", [T1, @{typ bool}])) =
    atom_schema_of_one scope T1
  | atom_schema_of_set scope (Type ("fun", [T1, T2])) =
    atom_schema_of_one scope T1 @ atom_schema_of_set scope T2
  | atom_schema_of_set scope T = atom_schema_of_one scope T
val arity_of_one = length oo atom_schema_of_one
val arity_of_set = length oo atom_schema_of_set

(* (typ -> int) -> typ list -> int -> int *)
fun index_for_bound_var _ [_] 0 = 0
  | index_for_bound_var scope (_ :: Ts) 0 =
    index_for_bound_var scope Ts 0 + arity_of_one scope (hd Ts)
  | index_for_bound_var scope Ts n = index_for_bound_var scope (tl Ts) (n - 1)
(* (typ -> int) -> typ list -> int -> rel_expr list *)
fun one_vars_for_bound_var scope Ts j =
  map (curry Var 1) (index_seq (index_for_bound_var scope Ts j)
                               (arity_of_one scope (nth Ts j)))
fun set_vars_for_bound_var scope Ts j =
  map (curry Var 1) (index_seq (index_for_bound_var scope Ts j)
                               (arity_of_set scope (nth Ts j)))
(* (typ -> int) -> typ list -> typ -> decl list *)
fun decls_for_one scope Ts T =
  map2 (curry DeclOne o pair 1)
       (index_seq (index_for_bound_var scope (T :: Ts) 0)
                  (arity_of_one scope (nth (T :: Ts) 0)))
       (map (AtomSeq o rpair 0) (atom_schema_of_one scope T))
fun decls_for_set scope Ts T =
  map2 (curry DeclOne o pair 1)
       (index_seq (index_for_bound_var scope (T :: Ts) 0)
                  (arity_of_set scope (nth (T :: Ts) 0)))
       (map (AtomSeq o rpair 0) (atom_schema_of_set scope T))

(* int list -> rel_expr *)
val atom_product = foldl1 Product o map Atom

val false_atom = Atom 0
val true_atom = Atom 1

(* rel_expr -> formula *)
fun formula_from_atom r = RelEq (r, true_atom)
(* formula -> rel_expr *)
fun atom_from_formula f = RelIf (f, true_atom, false_atom)

(* Proof.context -> (typ -> int) -> styp list -> term -> formula *)
fun kodkod_formula_for_term ctxt scope frees =
  let
    (* typ list -> int -> rel_expr *)
    val one_from_bound_var = foldl1 Product oo one_vars_for_bound_var scope
    val set_from_bound_var = foldl1 Product oo set_vars_for_bound_var scope
    (* typ -> rel_expr -> rel_expr *)
    fun set_from_one (T as Type ("fun", [T1, @{typ bool}])) r =
        let
          val jss = atom_schema_of_one scope T1 |> map (rpair 0)
                    |> all_combinations
        in
          map2 (fn i => fn js =>
                   RelIf (RelEq (Project (r, [Num i]), true_atom),
                          atom_product js, empty_n_ary_rel (length js)))
               (index_seq 0 (length jss)) jss
          |> foldl1 Union
        end
      | set_from_one (Type ("fun", [T1, T2])) r =
        let
          val jss = atom_schema_of_one scope T1 |> map (rpair 0)
                    |> all_combinations
          val arity2 = arity_of_one scope T2
        in
          map2 (fn i => fn js =>
                   Product (atom_product js,
                            Project (r, num_seq (i * arity2) arity2)
                            |> set_from_one T2))
               (index_seq 0 (length jss)) jss
          |> foldl1 Union
        end
      | set_from_one _ r = r
    (* typ list -> typ -> rel_expr -> rel_expr *)
    fun one_from_set Ts (T as Type ("fun", _)) r =
        Comprehension (decls_for_one scope Ts T,
                       RelEq (set_from_one T (one_from_bound_var (T :: Ts) 0),
                              r))
      | one_from_set _ _ r = r
    (* typ list -> term -> formula *)
    fun to_f Ts t =
      (case t of
         @{const Not} $ t1 => Not (to_f Ts t1)
       | @{const False} => False
       | @{const True} => True
       | Const (@{const_name All}, _) $ Abs (s, T, t') =>
         All (decls_for_one scope Ts T, to_f (T :: Ts) t')
       | (t0 as Const (@{const_name All}, _)) $ t1 =>
         to_f Ts (t0 $ eta_expand Ts t1 1)
       | Const (@{const_name Ex}, _) $ Abs (s, T, t') =>
         Exist (decls_for_one scope Ts T, to_f (T :: Ts) t')
       | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
         to_f Ts (t0 $ eta_expand Ts t1 1)
       | Const (@{const_name "op ="}, _) $ t1 $ t2 =>
         RelEq (to_set Ts t1, to_set Ts t2)
       | Const (@{const_name ord_class.less_eq},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
         Subset (to_set Ts t1, to_set Ts t2)
       | @{const "op &"} $ t1 $ t2 => And (to_f Ts t1, to_f Ts t2)
       | @{const "op |"} $ t1 $ t2 => Or (to_f Ts t1, to_f Ts t2)
       | @{const "op -->"} $ t1 $ t2 => Implies (to_f Ts t1, to_f Ts t2)
       | t1 $ t2 => Subset (to_one Ts t2, to_set Ts t1)
       | Free _ => raise SAME ()
       | Term.Var _ => raise SAME ()
       | Bound _ => raise SAME ()
       | Const (s, _) => raise NOT_SUPPORTED ("constant " ^ quote s)
       | _ => raise TERM ("to_f", [t]))
      handle SAME () => formula_from_atom (to_set Ts t)
    (* typ list -> term -> rel_expr *)
    and to_one Ts t =
        case t of
          Const (@{const_name Pair}, _) $ t1 $ t2 =>
          Product (to_one Ts t1, to_one Ts t2)
        | Const (@{const_name Pair}, _) $ _ => to_one Ts (eta_expand Ts t 1)
        | Const (@{const_name Pair}, _) => to_one Ts (eta_expand Ts t 2)
        | Const (@{const_name fst}, _) $ t1 =>
          let val fst_arity = arity_of_one scope (fastype_of1 (Ts, t)) in
            Project (to_one Ts t1, num_seq 0 fst_arity)
          end
        | Const (@{const_name fst}, _) => to_one Ts (eta_expand Ts t 1)
        | Const (@{const_name snd}, _) $ t1 =>
          let
            val pair_arity = arity_of_one scope (fastype_of1 (Ts, t1))
            val snd_arity = arity_of_one scope (fastype_of1 (Ts, t))
            val fst_arity = pair_arity - snd_arity
          in Project (to_one Ts t1, num_seq fst_arity snd_arity) end
        | Const (@{const_name snd}, _) => to_one Ts (eta_expand Ts t 1)
        | Bound j => one_from_bound_var Ts j
        | _ => one_from_set Ts (fastype_of1 (Ts, t)) (to_set Ts t)
    (* term -> rel_expr *)
    and to_set Ts t =
      (case t of
         @{const Not} => to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name All}, _) => to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name Ex}, _) => to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name "op ="}, _) $ _ => to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name "op ="}, _) => to_set Ts (eta_expand Ts t 2)
       | Const (@{const_name ord_class.less_eq},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ _ =>
         to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name ord_class.less_eq}, _) =>
         to_set Ts (eta_expand Ts t 2)
       | @{const "op &"} $ _ => to_set Ts (eta_expand Ts t 1)
       | @{const "op &"} => to_set Ts (eta_expand Ts t 2)
       | @{const "op |"} $ _ => to_set Ts (eta_expand Ts t 1)
       | @{const "op |"} => to_set Ts (eta_expand Ts t 2)
       | @{const "op -->"} $ _ => to_set Ts (eta_expand Ts t 1)
       | @{const "op -->"} => to_set Ts (eta_expand Ts t 2)
       | Const (@{const_name bot_class.bot},
                T as Type ("fun", [_, @{typ bool}])) =>
         empty_n_ary_rel (arity_of_set scope T)
       | Const (@{const_name insert}, _) $ t1 $ t2 =>
         Union (to_one Ts t1, to_set Ts t2)
       | Const (@{const_name insert}, _) $ _ => to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name insert}, _) => to_set Ts (eta_expand Ts t 2)
       | Const (@{const_name trancl}, _) $ t1 =>
         if arity_of_set scope (fastype_of1 (Ts, t1)) = 2 then
           Closure (to_set Ts t1)
         else
           raise NOT_SUPPORTED "transitive closure for function or pair type"
       | Const (@{const_name trancl}, _) => to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name lower_semilattice_class.inf},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
         Intersect (to_set Ts t1, to_set Ts t2)
       | Const (@{const_name lower_semilattice_class.inf}, _) $ _ =>
         to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name lower_semilattice_class.inf}, _) =>
         to_set Ts (eta_expand Ts t 2)
       | Const (@{const_name upper_semilattice_class.sup},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
         Union (to_set Ts t1, to_set Ts t2)
       | Const (@{const_name upper_semilattice_class.sup}, _) $ _ =>
         to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name upper_semilattice_class.sup}, _) =>
         to_set Ts (eta_expand Ts t 2)
       | Const (@{const_name minus_class.minus},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
         Difference (to_set Ts t1, to_set Ts t2)
       | Const (@{const_name minus_class.minus},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ _ =>
         to_set Ts (eta_expand Ts t 1)
       | Const (@{const_name minus_class.minus},
                Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) =>
         to_set Ts (eta_expand Ts t 2)
       | Const (@{const_name Pair}, _) $ _ $ _ => raise SAME ()
       | Const (@{const_name Pair}, _) $ _ => raise SAME ()
       | Const (@{const_name Pair}, _) => raise SAME ()
       | Const (@{const_name fst}, _) $ _ => raise SAME ()
       | Const (@{const_name fst}, _) => raise SAME ()
       | Const (@{const_name snd}, _) $ _ => raise SAME ()
       | Const (@{const_name snd}, _) => raise SAME ()
       | Const (_, @{typ bool}) => atom_from_formula (to_f Ts t)
       | Free (x as (_, T)) =>
         Rel (arity_of_set scope T, find_index (equal x) frees)
       | Term.Var _ => raise NOT_SUPPORTED "schematic variables"
       | Bound j => raise SAME ()
       | Abs (_, T, t') =>
         (case fastype_of1 (T :: Ts, t') of
            @{typ bool} => Comprehension (decls_for_one scope Ts T,
                                          to_f (T :: Ts) t')
          | T' => Comprehension (decls_for_one scope Ts T @
                                 decls_for_set scope (T :: Ts) T',
                                 Subset (set_from_bound_var (T' :: T :: Ts) 0,
                                         to_set (T :: Ts) t')))
       | t1 $ t2 =>
         (case fastype_of1 (Ts, t) of
            @{typ bool} => atom_from_formula (to_f Ts t)
          | T =>
            let val T2 = fastype_of1 (Ts, t2) in
              case arity_of_one scope T2 of
                1 => Join (to_one Ts t2, to_set Ts t1)
              | n =>
                let
                  val arity2 = arity_of_one scope T2
                  val res_arity = arity_of_set scope T
                in
                  Project (Intersect
                      (Product (to_one Ts t2,
                                atom_schema_of_set scope T
                                |> map (AtomSeq o rpair 0) |> foldl1 Product),
                       to_set Ts t1),
                      num_seq arity2 res_arity)
                end
            end)
       | _ => raise NOT_SUPPORTED ("term " ^
                                   quote (Syntax.string_of_term ctxt t)))
      handle SAME () => set_from_one (fastype_of1 (Ts, t)) (to_one Ts t)
  in to_f [] end

(* (typ -> int) -> int -> styp -> bound *)
fun bound_for_free scope i (s, T) =
  let val js = atom_schema_of_set scope T in
    ([((length js, i), s)],
     [TupleSet [], atom_schema_of_set scope T |> map (rpair 0)
                   |> tuple_set_from_atom_schema])
  end

(* (typ -> int) -> typ list -> typ -> rel_expr -> formula *)
fun declarative_axiom_for_rel_expr scope Ts (Type ("fun", [T1, T2])) r =
    if body_type T2 = bool_T then
      True
    else
      All (decls_for_one scope Ts T1,
           declarative_axiom_for_rel_expr scope (T1 :: Ts) T2
               (List.foldl Join r (one_vars_for_bound_var scope (T1 :: Ts) 0)))
  | declarative_axiom_for_rel_expr _ _ _ r = One r

(* (typ -> int) -> int -> styp -> formula *)
fun declarative_axiom_for_free scope i (_, T) =
  declarative_axiom_for_rel_expr scope [] T (Rel (arity_of_set scope T, i))

(* Proof.context -> (typ -> int) -> term -> string *)
fun pick_nits_in_term ctxt raw_scope t =
  let
    val thy = ProofContext.theory_of ctxt
    (* typ -> int *)
    fun scope (Type ("fun", [T1, T2])) = reasonable_power (scope T2) (scope T1)
      | scope (Type ("*", [T1, T2])) = scope T1 * scope T2
      | scope @{typ bool} = 2
      | scope T = Int.max (1, raw_scope T)
    val neg_t = @{const Not} $ ObjectLogic.atomize_term thy t
    val _ = fold_types (K o check_type ctxt) neg_t ()
    val frees = Term.add_frees neg_t []
    val bounds = map2 (bound_for_free scope) (index_seq 0 (length frees)) frees
    val declarative_axioms =
      map2 (declarative_axiom_for_free scope) (index_seq 0 (length frees))
           frees
    val formula = kodkod_formula_for_term ctxt scope frees neg_t
                  |> fold_rev (curry And) declarative_axioms
    val univ_card = univ_card 0 0 0 bounds formula
    val problem =
      {comment = "", settings = [], univ_card = univ_card, tuple_assigns = [],
       bounds = bounds, int_bounds = [], expr_assigns = [], formula = formula}
  in
    case solve_any_problem true NONE 0 1 [problem] of
      Normal ([], _) => "none"
    | Normal _ => "genuine"
    | TimedOut _ => "unknown"
    | Interrupted _ => "unknown"
    | Error (s, _) => error ("Kodkod error: " ^ s)
  end
  handle NOT_SUPPORTED details =>
         (warning ("Unsupported case: " ^ details ^ "."); "unknown")
end;