(*  ID:         $Id$
    Author:     Florian Haftmann, TU Muenchen
*)
header {* Setup of code generator tools *}
theory Code_Generator
imports HOL
begin
subsection {* SML code generator setup *}
types_code
  "bool"  ("bool")
attach (term_of) {*
fun term_of_bool b = if b then HOLogic.true_const else HOLogic.false_const;
*}
attach (test) {*
fun gen_bool i = one_of [false, true];
*}
  "prop"  ("bool")
attach (term_of) {*
fun term_of_prop b =
  HOLogic.mk_Trueprop (if b then HOLogic.true_const else HOLogic.false_const);
*}
consts_code
  "Trueprop" ("(_)")
  "True"    ("true")
  "False"   ("false")
  "Not"     ("not")
  "op |"    ("(_ orelse/ _)")
  "op &"    ("(_ andalso/ _)")
  "HOL.If"      ("(if _/ then _/ else _)")
setup {*
let
fun eq_codegen thy defs gr dep thyname b t =
    (case strip_comb t of
       (Const ("op =", Type (_, [Type ("fun", _), _])), _) => NONE
     | (Const ("op =", _), [t, u]) =>
          let
            val (gr', pt) = Codegen.invoke_codegen thy defs dep thyname false (gr, t);
            val (gr'', pu) = Codegen.invoke_codegen thy defs dep thyname false (gr', u);
            val (gr''', _) = Codegen.invoke_tycodegen thy defs dep thyname false (gr'', HOLogic.boolT)
          in
            SOME (gr''', Codegen.parens
              (Pretty.block [pt, Pretty.str " =", Pretty.brk 1, pu]))
          end
     | (t as Const ("op =", _), ts) => SOME (Codegen.invoke_codegen
         thy defs dep thyname b (gr, Codegen.eta_expand t ts 2))
     | _ => NONE);
in
Codegen.add_codegen "eq_codegen" eq_codegen
end
*}
text {* Evaluation *}
method_setup evaluation = {*
let
fun evaluation_tac i = Tactical.PRIMITIVE (Drule.fconv_rule
  (Drule.goals_conv (equal i) Codegen.evaluation_conv));
in Method.no_args (Method.SIMPLE_METHOD' (evaluation_tac THEN' rtac TrueI)) end
*} "solve goal by evaluation"
subsection {* Generic code generator setup *}
text {* operational equality for code generation *}
class eq (attach "op =") = type
text {* equality for Haskell *}
code_class eq
  (Haskell "Eq" where "op =" \<equiv> "(==)")
code_const "op ="
  (Haskell infixl 4 "==")
text {* type bool *}
code_datatype True False
lemma [code func]:
  shows "(False \<and> x) = False"
    and "(True \<and> x) = x"
    and "(x \<and> False) = False"
    and "(x \<and> True) = x" by simp_all
lemma [code func]:
  shows "(False \<or> x) = x"
    and "(True \<or> x) = True"
    and "(x \<or> False) = x"
    and "(x \<or> True) = True" by simp_all
lemma [code func]:
  shows "(\<not> True) = False"
    and "(\<not> False) = True" by (rule HOL.simp_thms)+
lemmas [code func] = imp_conv_disj
lemmas [code func] = if_True if_False
instance bool :: eq ..
lemma [code func]:
  "True = P \<longleftrightarrow> P" by simp
lemma [code func]:
  "False = P \<longleftrightarrow> \<not> P" by simp
lemma [code func]:
  "P = True \<longleftrightarrow> P" by simp
lemma [code func]:
  "P = False \<longleftrightarrow> \<not> P" by simp
code_type bool
  (SML "bool")
  (OCaml "bool")
  (Haskell "Bool")
code_instance bool :: eq
  (Haskell -)
code_const "op = \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
  (Haskell infixl 4 "==")
code_const True and False and Not and "op &" and "op |" and If
  (SML "true" and "false" and "not"
    and infixl 1 "andalso" and infixl 0 "orelse"
    and "!(if (_)/ then (_)/ else (_))")
  (OCaml "true" and "false" and "not"
    and infixl 4 "&&" and infixl 2 "||"
    and "!(if (_)/ then (_)/ else (_))")
  (Haskell "True" and "False" and "not"
    and infixl 3 "&&" and infixl 2 "||"
    and "!(if (_)/ then (_)/ else (_))")
code_reserved SML
  bool true false not
code_reserved OCaml
  bool true false not
text {* type prop *}
code_datatype Trueprop "prop"
text {* type itself *}
code_datatype "TYPE('a)"
text {* prevent unfolding of quantifier definitions *}
lemma [code func]:
  "Ex = Ex"
  "All = All"
  by rule+
text {* code generation for undefined as exception *}
code_const undefined
  (SML "raise/ Fail/ \"undefined\"")
  (OCaml "failwith/ \"undefined\"")
  (Haskell "error/ \"undefined\"")
code_reserved SML Fail
code_reserved OCaml failwith
subsection {* Evaluation oracle *}
oracle eval_oracle ("term") = {* fn thy => fn t => 
  if CodegenPackage.satisfies thy (HOLogic.dest_Trueprop t) [] 
  then t
  else HOLogic.Trueprop $ (HOLogic.true_const) (*dummy*)
*}
method_setup eval = {*
let
  fun eval_tac thy = 
    SUBGOAL (fn (t, i) => rtac (eval_oracle thy t) i)
in 
  Method.ctxt_args (fn ctxt => 
    Method.SIMPLE_METHOD' (eval_tac (ProofContext.theory_of ctxt)))
end
*} "solve goal by evaluation"
subsection {* Normalization by evaluation *}
method_setup normalization = {*
let
  fun normalization_tac i = Tactical.PRIMITIVE (Drule.fconv_rule
    (Drule.goals_conv (equal i) (HOLogic.Trueprop_conv
      NBE.normalization_conv)));
in
  Method.no_args (Method.SIMPLE_METHOD' (normalization_tac THEN' resolve_tac [TrueI, refl]))
end
*} "solve goal by normalization"
text {* lazy @{const If} *}
definition
  if_delayed :: "bool \<Rightarrow> (bool \<Rightarrow> 'a) \<Rightarrow> (bool \<Rightarrow> 'a) \<Rightarrow> 'a" where
  "if_delayed b f g = (if b then f True else g False)"
lemma [code func]:
  shows "if_delayed True f g = f True"
    and "if_delayed False f g = g False"
  unfolding if_delayed_def by simp_all
lemma [normal pre, symmetric, normal post]:
  "(if b then x else y) = if_delayed b (\<lambda>_. x) (\<lambda>_. y)"
  unfolding if_delayed_def ..
hide (open) const if_delayed
end