src/HOL/Tools/Predicate_Compile/predicate_compile_pred.ML
author nipkow
Thu, 13 Mar 2014 07:07:07 +0100
changeset 56073 29e308b56d23
parent 55437 3fd63b92ea3b
child 56239 17df7145a871
permissions -rw-r--r--
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions

(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_pred.ML
    Author:     Lukas Bulwahn, TU Muenchen

Preprocessing definitions of predicates to introduction rules.
*)

signature PREDICATE_COMPILE_PRED =
sig
  (* preprocesses an equation to a set of intro rules; defines new constants *)
  val preprocess : Predicate_Compile_Aux.options -> (string * thm list) -> theory
    -> ((string * thm list) list * theory) 
  val flat_higher_order_arguments : ((string * thm list) list * theory)
    -> ((string * thm list) list * ((string * thm list) list * theory))
end;


structure Predicate_Compile_Pred : PREDICATE_COMPILE_PRED =
struct

open Predicate_Compile_Aux

fun is_compound ((Const (@{const_name Not}, _)) $ _) =
      error "is_compound: Negation should not occur; preprocessing is defect"
  | is_compound ((Const (@{const_name Ex}, _)) $ _) = true
  | is_compound ((Const (@{const_name HOL.disj}, _)) $ _ $ _) = true
  | is_compound ((Const (@{const_name HOL.conj}, _)) $ _ $ _) =
      error "is_compound: Conjunction should not occur; preprocessing is defect"
  | is_compound _ = false

fun try_destruct_case thy names atom =
  (case find_split_thm thy (fst (strip_comb atom)) of
    NONE => NONE
  | SOME raw_split_thm =>
    let
      val split_thm = prepare_split_thm (Proof_Context.init_global thy) raw_split_thm
      (* TODO: contextify things - this line is to unvarify the split_thm *)
      (*val ((_, [isplit_thm]), _) =
        Variable.import true [split_thm] (Proof_Context.init_global thy)*)
      val (assms, concl) = Logic.strip_horn (prop_of split_thm)
      val (_, [split_t]) = strip_comb (HOLogic.dest_Trueprop concl) 
      val atom' = case_betapply thy atom
      val subst = Pattern.match thy (split_t, atom') (Vartab.empty, Vartab.empty)
      val names' = Term.add_free_names atom' names
      fun mk_subst_rhs assm =
        let
          val (vTs, assm') = strip_all (Envir.beta_norm (Envir.subst_term subst assm))
          val var_names = Name.variant_list names' (map fst vTs)
          val vars = map Free (var_names ~~ (map snd vTs))
          val (prems', pre_res) = Logic.strip_horn (subst_bounds (rev vars, assm'))
          fun partition_prem_subst prem =
            (case HOLogic.dest_eq (HOLogic.dest_Trueprop prem) of
              (Free (x, T), r) => (NONE, SOME ((x, T), r))
            | _ => (SOME prem, NONE))
          fun partition f xs =
            let
              fun partition' acc1 acc2 [] = (rev acc1, rev acc2)
                | partition' acc1 acc2 (x :: xs) =
                  let
                    val (y, z) = f x
                    val acc1' = (case y of NONE => acc1 | SOME y' => y' :: acc1)
                    val acc2' = (case z of NONE => acc2 | SOME z' => z' :: acc2)
                  in partition' acc1' acc2' xs end
            in partition' [] [] xs end
          val (prems'', subst) = partition partition_prem_subst prems'
          val (_, [inner_t]) = strip_comb (HOLogic.dest_Trueprop pre_res)
          val pre_rhs =
            fold (curry HOLogic.mk_conj) (map HOLogic.dest_Trueprop prems'') inner_t
          val rhs = Envir.expand_term_frees subst pre_rhs
        in
          (case try_destruct_case thy (var_names @ names') rhs of
            NONE => [(subst, rhs)]
          | SOME (_, srs) => map (fn (subst', rhs') => (subst @ subst', rhs')) srs)
        end
     in SOME (atom', maps mk_subst_rhs assms) end)
     
fun flatten constname atom (defs, thy) =
  if is_compound atom then
    let
      val atom = Envir.beta_norm (Envir.eta_long [] atom)
      val constname =
        singleton (Name.variant_list (map (Long_Name.base_name o fst) defs))
          ((Long_Name.base_name constname) ^ "_aux")
      val full_constname = Sign.full_bname thy constname
      val (params, args) = List.partition (is_predT o fastype_of)
        (map Free (Term.add_frees atom []))
      val constT = map fastype_of (params @ args) ---> HOLogic.boolT
      val lhs = list_comb (Const (full_constname, constT), params @ args)
      val def = Logic.mk_equals (lhs, atom)
      val ([definition], thy') = thy
        |> Sign.add_consts_i [(Binding.name constname, constT, NoSyn)]
        |> Global_Theory.add_defs false [((Binding.name (Thm.def_name constname), def), [])]
    in
      (lhs, ((full_constname, [definition]) :: defs, thy'))
    end
  else
    (case (fst (strip_comb atom)) of
      (Const (@{const_name If}, _)) =>
        let
          val if_beta = @{lemma "(if c then x else y) z = (if c then x z else y z)" by simp}
          val atom' = Raw_Simplifier.rewrite_term thy
            (map (fn th => th RS @{thm eq_reflection}) [@{thm if_bool_eq_disj}, if_beta]) [] atom
          val _ = @{assert} (not (atom = atom'))
        in
          flatten constname atom' (defs, thy)
        end
    | _ =>
        (case try_destruct_case thy [] atom of
          NONE => (atom, (defs, thy))
        | SOME (atom', srs) =>
            let      
              val frees = map Free (Term.add_frees atom' [])
              val constname =
                singleton (Name.variant_list (map (Long_Name.base_name o fst) defs))
                  ((Long_Name.base_name constname) ^ "_aux")
              val full_constname = Sign.full_bname thy constname
              val constT = map fastype_of frees ---> HOLogic.boolT
              val lhs = list_comb (Const (full_constname, constT), frees)
              fun mk_def (subst, rhs) =
                Logic.mk_equals (fold Envir.expand_term_frees (map single subst) lhs, rhs)
              val new_defs = map mk_def srs
              val (definition, thy') = thy
              |> Sign.add_consts_i [(Binding.name constname, constT, NoSyn)]
              |> fold_map Specification.axiom  (* FIXME !?!?!?! *)
                (map_index (fn (i, t) =>
                  ((Binding.name (constname ^ "_def" ^ string_of_int i), []), t)) new_defs)
            in
              (lhs, ((full_constname, map Drule.export_without_context definition) :: defs, thy'))
            end))

fun flatten_intros constname intros thy =
  let
    val ctxt = Proof_Context.init_global thy  (* FIXME proper context!? *)
    val ((_, intros), ctxt') = Variable.import true intros ctxt
    val (intros', (local_defs, thy')) = (fold_map o fold_map_atoms)
      (flatten constname) (map prop_of intros) ([], thy)
    val ctxt'' = Proof_Context.transfer thy' ctxt'
    val intros'' =
      map (fn t => Goal.prove ctxt'' [] [] t (fn _ => ALLGOALS Skip_Proof.cheat_tac)) intros'
      |> Variable.export ctxt'' ctxt
  in
    (intros'', (local_defs, thy'))
  end

(* TODO: same function occurs in inductive package *)
fun select_disj 1 1 = []
  | select_disj _ 1 = [rtac @{thm disjI1}]
  | select_disj n i = (rtac @{thm disjI2})::(select_disj (n - 1) (i - 1))

fun introrulify thy ths = 
  let
    val ctxt = Proof_Context.init_global thy
    val ((_, ths'), ctxt') = Variable.import true ths ctxt
    fun introrulify' th =
      let
        val (lhs, rhs) = Logic.dest_equals (prop_of th)
        val frees = Term.add_free_names rhs []
        val disjuncts = HOLogic.dest_disj rhs
        val nctxt = Name.make_context frees
        fun mk_introrule t =
          let
            val ((ps, t'), _) = focus_ex t nctxt
            val prems = map HOLogic.mk_Trueprop (HOLogic.dest_conj t')
          in
            (ps, Logic.list_implies (prems, HOLogic.mk_Trueprop lhs))
          end
        val x = ((cterm_of thy) o the_single o snd o strip_comb o HOLogic.dest_Trueprop o fst o
          Logic.dest_implies o prop_of) @{thm exI}
        fun prove_introrule (index, (ps, introrule)) =
          let
            val tac = Simplifier.simp_tac (put_simpset HOL_basic_ss ctxt' addsimps [th]) 1
              THEN EVERY1 (select_disj (length disjuncts) (index + 1)) 
              THEN (EVERY (map (fn y =>
                rtac (Drule.cterm_instantiate [(x, cterm_of thy (Free y))] @{thm exI}) 1) ps))
              THEN REPEAT_DETERM (rtac @{thm conjI} 1 THEN atac 1)
              THEN TRY (atac 1)
          in
            Goal.prove ctxt' (map fst ps) [] introrule (fn _ => tac)
          end
      in
        map_index prove_introrule (map mk_introrule disjuncts)
      end
  in maps introrulify' ths' |> Variable.export ctxt' ctxt end

fun rewrite ctxt =
  Simplifier.simplify (put_simpset HOL_basic_ss ctxt addsimps [@{thm Ball_def}, @{thm Bex_def}])
  #> Simplifier.simplify (put_simpset HOL_basic_ss ctxt addsimps [@{thm all_not_ex}])
  #> Conv.fconv_rule (nnf_conv ctxt)
  #> Simplifier.simplify (put_simpset HOL_basic_ss ctxt addsimps [@{thm ex_disj_distrib}])

fun rewrite_intros ctxt =
  Simplifier.full_simplify (put_simpset HOL_basic_ss ctxt addsimps [@{thm all_not_ex}])
  #> Simplifier.full_simplify
    (put_simpset HOL_basic_ss ctxt
      addsimps (tl @{thms bool_simps}) addsimps @{thms nnf_simps})
  #> split_conjuncts_in_assms ctxt

fun print_specs options thy msg ths =
  if show_intermediate_results options then
    (tracing (msg); tracing (commas (map (Display.string_of_thm_global thy) ths)))
  else
    ()

fun preprocess options (constname, specs) thy =
(*  case Predicate_Compile_Data.processed_specs thy constname of
    SOME specss => (specss, thy)
  | NONE =>*)
    let
      val ctxt = Proof_Context.init_global thy  (* FIXME proper context!? *)
      val intros =
        if forall is_pred_equation specs then 
          map (split_conjuncts_in_assms ctxt) (introrulify thy (map (rewrite ctxt) specs))
        else if forall (is_intro constname) specs then
          map (rewrite_intros ctxt) specs
        else
          error ("unexpected specification for constant " ^ quote constname ^ ":\n"
            ^ commas (map (quote o Display.string_of_thm_global thy) specs))
      val if_beta = @{lemma "(if c then x else y) z = (if c then x z else y z)" by simp}
      val intros = map (rewrite_rule ctxt [if_beta RS @{thm eq_reflection}]) intros
      val _ = print_specs options thy "normalized intros" intros
      (*val intros = maps (split_cases thy) intros*)
      val (intros', (local_defs, thy')) = flatten_intros constname intros thy
      val (intross, thy'') = fold_map (preprocess options) local_defs thy'
      val full_spec = (constname, intros') :: flat intross
      (*val thy''' = Predicate_Compile_Data.store_processed_specs (constname, full_spec) thy''*)
    in
      (full_spec, thy'')
    end;

fun flat_higher_order_arguments (intross, thy) =
  let
    fun process constname atom (new_defs, thy) =
      let
        val (pred, args) = strip_comb atom
        fun replace_abs_arg (abs_arg as Abs _ ) (new_defs, thy) =
          let
            val vars = map Var (Term.add_vars abs_arg [])
            val abs_arg' = Logic.unvarify_global abs_arg
            val frees = map Free (Term.add_frees abs_arg' [])
            val constname =
              singleton (Name.variant_list (map (Long_Name.base_name o fst) new_defs))
                ((Long_Name.base_name constname) ^ "_hoaux")
            val full_constname = Sign.full_bname thy constname
            val constT = map fastype_of frees ---> (fastype_of abs_arg')
            val const = Const (full_constname, constT)
            val lhs = list_comb (const, frees)
            val def = Logic.mk_equals (lhs, abs_arg')
            val ([definition], thy') = thy
              |> Sign.add_consts_i [(Binding.name constname, constT, NoSyn)]
              |> Global_Theory.add_defs false [((Binding.name (Thm.def_name constname), def), [])]
          in
            (list_comb (Logic.varify_global const, vars),
              ((full_constname, [definition])::new_defs, thy'))
          end
        | replace_abs_arg arg (new_defs, thy) =
          if is_some (try HOLogic.dest_prodT (fastype_of arg)) then
            (case try HOLogic.dest_prod arg of
              SOME (t1, t2) =>
                (new_defs, thy)
                |> process constname t1 
                ||>> process constname t2
                |>> HOLogic.mk_prod
            | NONE =>
              (warning ("Replacing higher order arguments " ^
                "is not applied in an undestructable product type"); (arg, (new_defs, thy))))
          else if (is_predT (fastype_of arg)) then
            process constname arg (new_defs, thy)
          else
            (arg, (new_defs, thy))

        val (args', (new_defs', thy')) = fold_map replace_abs_arg
          (map Envir.beta_eta_contract args) (new_defs, thy)
      in
        (list_comb (pred, args'), (new_defs', thy'))
      end
    fun flat_intro intro (new_defs, thy) =
      let
        val constname = fst (dest_Const (fst (strip_comb
          (HOLogic.dest_Trueprop (Logic.strip_imp_concl (prop_of intro))))))
        val (intro_ts, (new_defs, thy)) =
          fold_map_atoms (process constname) (prop_of intro) (new_defs, thy)
        val th = Skip_Proof.make_thm thy intro_ts
      in
        (th, (new_defs, thy))
      end
    fun fold_map_spec f [] s = ([], s)
      | fold_map_spec f ((c, ths) :: specs) s =
        let
          val (ths', s') = f ths s
          val (specs', s'') = fold_map_spec f specs s'
        in ((c, ths') :: specs', s'') end
    val (intross', (new_defs, thy')) = fold_map_spec (fold_map flat_intro) intross ([], thy)
  in
    (intross', (new_defs, thy'))
  end

end