used nice syntax, removed lemma because it makes a nice exercise.
(* Author: Tobias Nipkow *)
theory VC imports Hoare begin
subsection "Verification Conditions"
text{* Annotated commands: commands where loops are annotated with
invariants. *}
datatype acom =
Askip ("SKIP") |
Aassign vname aexp ("(_ ::= _)" [1000, 61] 61) |
Aseq acom acom ("_;;/ _" [60, 61] 60) |
Aif bexp acom acom ("(IF _/ THEN _/ ELSE _)" [0, 0, 61] 61) |
Awhile assn bexp acom ("({_}/ WHILE _/ DO _)" [0, 0, 61] 61)
text{* Strip annotations: *}
fun strip :: "acom \<Rightarrow> com" where
"strip SKIP = com.SKIP" |
"strip (x ::= a) = (x ::= a)" |
"strip (c\<^isub>1;; c\<^isub>2) = (strip c\<^isub>1;; strip c\<^isub>2)" |
"strip (IF b THEN c\<^isub>1 ELSE c\<^isub>2) = (IF b THEN strip c\<^isub>1 ELSE strip c\<^isub>2)" |
"strip ({_} WHILE b DO c) = (WHILE b DO strip c)"
text{* Weakest precondition from annotated commands: *}
fun pre :: "acom \<Rightarrow> assn \<Rightarrow> assn" where
"pre SKIP Q = Q" |
"pre (x ::= a) Q = (\<lambda>s. Q(s(x := aval a s)))" |
"pre (c\<^isub>1;; c\<^isub>2) Q = pre c\<^isub>1 (pre c\<^isub>2 Q)" |
"pre (IF b THEN c\<^isub>1 ELSE c\<^isub>2) Q =
(\<lambda>s. (bval b s \<longrightarrow> pre c\<^isub>1 Q s) \<and>
(\<not> bval b s \<longrightarrow> pre c\<^isub>2 Q s))" |
"pre ({I} WHILE b DO c) Q = I"
text{* Verification condition: *}
fun vc :: "acom \<Rightarrow> assn \<Rightarrow> assn" where
"vc SKIP Q = (\<lambda>s. True)" |
"vc (x ::= a) Q = (\<lambda>s. True)" |
"vc (c\<^isub>1;; c\<^isub>2) Q = (\<lambda>s. vc c\<^isub>1 (pre c\<^isub>2 Q) s \<and> vc c\<^isub>2 Q s)" |
"vc (IF b THEN c\<^isub>1 ELSE c\<^isub>2) Q = (\<lambda>s. vc c\<^isub>1 Q s \<and> vc c\<^isub>2 Q s)" |
"vc ({I} WHILE b DO c) Q =
(\<lambda>s. (I s \<and> \<not> bval b s \<longrightarrow> Q s) \<and>
(I s \<and> bval b s \<longrightarrow> pre c I s) \<and>
vc c I s)"
text {* Soundness: *}
lemma vc_sound: "\<forall>s. vc c Q s \<Longrightarrow> \<turnstile> {pre c Q} strip c {Q}"
proof(induction c arbitrary: Q)
case (Awhile I b c)
show ?case
proof(simp, rule While')
from `\<forall>s. vc (Awhile I b c) Q s`
have vc: "\<forall>s. vc c I s" and IQ: "\<forall>s. I s \<and> \<not> bval b s \<longrightarrow> Q s" and
pre: "\<forall>s. I s \<and> bval b s \<longrightarrow> pre c I s" by simp_all
have "\<turnstile> {pre c I} strip c {I}" by(rule Awhile.IH[OF vc])
with pre show "\<turnstile> {\<lambda>s. I s \<and> bval b s} strip c {I}"
by(rule strengthen_pre)
show "\<forall>s. I s \<and> \<not>bval b s \<longrightarrow> Q s" by(rule IQ)
qed
qed (auto intro: hoare.conseq)
corollary vc_sound':
"(\<forall>s. vc c Q s) \<and> (\<forall>s. P s \<longrightarrow> pre c Q s) \<Longrightarrow> \<turnstile> {P} strip c {Q}"
by (metis strengthen_pre vc_sound)
text{* Completeness: *}
lemma pre_mono:
"\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> pre c P s \<Longrightarrow> pre c P' s"
proof (induction c arbitrary: P P' s)
case Aseq thus ?case by simp metis
qed simp_all
lemma vc_mono:
"\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> vc c P s \<Longrightarrow> vc c P' s"
proof(induction c arbitrary: P P')
case Aseq thus ?case by simp (metis pre_mono)
qed simp_all
lemma vc_complete:
"\<turnstile> {P}c{Q} \<Longrightarrow> \<exists>c'. strip c' = c \<and> (\<forall>s. vc c' Q s) \<and> (\<forall>s. P s \<longrightarrow> pre c' Q s)"
(is "_ \<Longrightarrow> \<exists>c'. ?G P c Q c'")
proof (induction rule: hoare.induct)
case Skip
show ?case (is "\<exists>ac. ?C ac")
proof show "?C Askip" by simp qed
next
case (Assign P a x)
show ?case (is "\<exists>ac. ?C ac")
proof show "?C(Aassign x a)" by simp qed
next
case (Seq P c1 Q c2 R)
from Seq.IH obtain ac1 where ih1: "?G P c1 Q ac1" by blast
from Seq.IH obtain ac2 where ih2: "?G Q c2 R ac2" by blast
show ?case (is "\<exists>ac. ?C ac")
proof
show "?C(Aseq ac1 ac2)"
using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
qed
next
case (If P b c1 Q c2)
from If.IH obtain ac1 where ih1: "?G (\<lambda>s. P s \<and> bval b s) c1 Q ac1"
by blast
from If.IH obtain ac2 where ih2: "?G (\<lambda>s. P s \<and> \<not>bval b s) c2 Q ac2"
by blast
show ?case (is "\<exists>ac. ?C ac")
proof
show "?C(Aif b ac1 ac2)" using ih1 ih2 by simp
qed
next
case (While P b c)
from While.IH obtain ac where ih: "?G (\<lambda>s. P s \<and> bval b s) c P ac" by blast
show ?case (is "\<exists>ac. ?C ac")
proof show "?C(Awhile P b ac)" using ih by simp qed
next
case conseq thus ?case by(fast elim!: pre_mono vc_mono)
qed
end