Proper treatment of beta-redexes in witness theorems.
(* Title: FOL/ex/LocaleTest.thy
ID: $Id$
Author: Clemens Ballarin
Copyright (c) 2005 by Clemens Ballarin
Collection of regression tests for locales.
*)
header {* Test of Locale Interpretation *}
theory LocaleTest
imports FOL
begin
ML {* set quick_and_dirty *} (* allow for thm command in batch mode *)
ML {* set Toplevel.debug *}
ML {* set show_hyps *}
ML {* set show_sorts *}
section {* Renaming with Syntax *}
locale (open) S = var mult +
assumes "mult(x, y) = mult(y, x)"
print_locale S
locale S' = S mult (infixl "**" 60)
print_locale S'
locale T = var mult (infixl "**" 60) +
assumes "x ** y = y ** x"
locale U = T mult (infixl "**" 60) + T add (infixl "++" 55) + var h +
assumes hom: "h(x ** y) = h(x) ++ h(y)"
locale V = U _ add
section {* Constrains *}
locale Z = fixes a (structure)
locale Z' = Z +
constrains a :: "'a => 'b"
assumes "a (x :: 'a) = a (y)"
print_locale Z'
section {* Interpretation *}
(* interpretation input syntax *)
locale L
locale M = fixes a and b and c
interpretation test [simp]: L + M a b c [x y z] .
print_interps L (* output: test *)
print_interps M (* output: test *)
interpretation test [simp]: L print_interps M .
interpretation L .
(* processing of locale expression *)
locale A = fixes a assumes asm_A: "a = a"
locale (open) B = fixes b assumes asm_B [simp]: "b = b"
locale C = A + B + assumes asm_C: "c = c"
(* TODO: independent type var in c, prohibit locale declaration *)
locale D = A + B + fixes d defines def_D: "d == (a = b)"
theorem (in A)
includes D
shows True ..
theorem (in D) True ..
typedecl i
arities i :: "term"
interpretation p1: C ["X::i" "Y::i"] by (auto intro: A.intro C_axioms.intro)
print_interps A (* output: p1 *)
(* possible accesses *)
thm p1.a.asm_A thm LocaleTest.p1.a.asm_A
thm p1.asm_A thm LocaleTest.p1.asm_A
(* without prefix *)
interpretation C ["W::i" "Z::i"] . (* subsumed by p1: C *)
interpretation C ["W::'a" "Z::i"] by (auto intro: A.intro C_axioms.intro)
(* subsumes p1: A and p1: C *)
print_interps A (* output: <no prefix>, p1 *)
(* possible accesses *)
thm asm_C thm a_b.asm_C thm LocaleTest.a_b.asm_C thm LocaleTest.a_b.asm_C
interpretation p2: D [X "Y::i" "Y = X"] by (simp add: eq_commute)
print_interps A (* output: <no prefix>, p1 *)
print_interps D (* output: p2 *)
interpretation p3: D [X "Y::i"] .
(* duplicate: not registered *)
(* thm p3.a.asm_A *)
print_interps A (* output: <no prefix>, p1 *)
print_interps B (* output: p1 *)
print_interps C (* output: <no name>, p1 *)
print_interps D (* output: p2, p3 *)
(* schematic vars in instantiation not permitted *)
(*
interpretation p4: A ["?x::?'a1"] apply (rule A.intro) apply rule done
print_interps A
*)
interpretation p10: D + D a' b' d' [X "Y::i" _ u "v::i" _] .
corollary (in D) th_x: True ..
(* possible accesses: for each registration *)
thm p2.th_x thm p3.th_x
lemma (in D) th_y: "d == (a = b)" .
thm p2.th_y thm p3.th_y
lemmas (in D) th_z = th_y
thm p2.th_z
section {* Interpretation in proof contexts *}
locale F = fixes f assumes asm_F: "f & f --> f"
theorem True
proof -
fix alpha::i and beta::'a and gamma::o
(* FIXME: omitting type of beta leads to error later at interpret p6 *)
have alpha_A: "A(alpha)" by (auto intro: A.intro)
interpret p5: A [alpha] . (* subsumed *)
print_interps A (* output: <no prefix>, p1 *)
interpret p6: C [alpha beta] by (auto intro: C_axioms.intro)
print_interps A (* output: <no prefix>, p1 *)
print_interps C (* output: <no prefix>, p1, p6 *)
interpret p11: F [gamma] by (fast intro: F.intro)
thm p11.asm_F (* gamma is a Free *)
qed rule
theorem (in A) True
proof -
print_interps A
fix beta and gamma
interpret p9: D [a beta _]
(* no proof obligation for A !!! *)
apply - apply (rule refl) apply assumption done
qed rule
(* Definition involving free variable *)
ML {* reset show_sorts *}
locale E = fixes e defines e_def: "e(x) == x & x"
notes e_def2 = e_def
lemma (in E) True thm e_def by fast
interpretation p7: E ["%x. x"] by simp
thm p7.e_def2 (* has no premise *)
locale E' = fixes e defines e_def: "e == (%x. x & x)"
notes e_def2 = e_def
interpretation p7': E' ["(%x. x)"] by simp
thm p7'.e_def2
(* Definition involving free variable in assm *)
locale (open) G = fixes g assumes asm_G: "g --> x"
notes asm_G2 = asm_G
interpretation p8: G ["False"] by fast
thm p8.asm_G2
subsection {* Locale without assumptions *}
locale L1 = notes rev_conjI [intro] = conjI [THEN iffD1 [OF conj_commute]]
lemma "[| P; Q |] ==> P & Q"
proof -
interpret my: L1 . txt {* No chained fact required. *}
assume Q and P txt {* order reversed *}
then show "P & Q" .. txt {* Applies @{thm my.rev_conjI}. *}
qed
locale L11 = notes rev_conjI = conjI [THEN iffD1 [OF conj_commute]]
lemma "[| P; Q |] ==> P & Q"
proof -
interpret [intro]: L11 . txt {* Attribute supplied at instantiation. *}
assume Q and P
then show "P & Q" ..
qed
subsection {* Simple locale with assumptions *}
consts bin :: "[i, i] => i" (infixl "#" 60)
axioms i_assoc: "(x # y) # z = x # (y # z)"
i_comm: "x # y = y # x"
locale L2 =
fixes OP (infixl "+" 60)
assumes assoc: "(x + y) + z = x + (y + z)"
and comm: "x + y = y + x"
lemma (in L2) lcomm: "x + (y + z) = y + (x + z)"
proof -
have "x + (y + z) = (x + y) + z" by (simp add: assoc)
also have "... = (y + x) + z" by (simp add: comm)
also have "... = y + (x + z)" by (simp add: assoc)
finally show ?thesis .
qed
lemmas (in L2) AC = comm assoc lcomm
lemma "(x::i) # y # z # w = y # x # w # z"
proof -
interpret my: L2 ["op #"] by (rule L2.intro [of "op #", OF i_assoc i_comm])
txt {* Chained fact required to discharge assumptions of @{text L2}
and instantiate parameters. *}
show ?thesis by (simp only: my.OP.AC) (* or simply AC *)
qed
subsection {* Nested locale with assumptions *}
locale L3 =
fixes OP (infixl "+" 60)
assumes assoc: "(x + y) + z = x + (y + z)"
locale L4 = L3 +
assumes comm: "x + y = y + x"
lemma (in L4) lcomm: "x + (y + z) = y + (x + z)"
proof -
have "x + (y + z) = (x + y) + z" by (simp add: assoc)
also have "... = (y + x) + z" by (simp add: comm)
also have "... = y + (x + z)" by (simp add: assoc)
finally show ?thesis .
qed
lemmas (in L4) AC = comm assoc lcomm
lemma "(x::i) # y # z # w = y # x # w # z"
proof -
interpret my: L4 ["op #"]
by (auto intro: L3.intro L4_axioms.intro i_assoc i_comm)
show ?thesis by (simp only: my.OP.AC) (* or simply AC *)
qed
subsection {* Locale with definition *}
text {* This example is admittedly not very creative :-) *}
locale L5 = L4 + var A +
defines A_def: "A == True"
lemma (in L5) lem: A
by (unfold A_def) rule
lemma "L5(op #) ==> True"
proof -
assume "L5(op #)"
then interpret L5 ["op #"] by (auto intro: L5.axioms)
show ?thesis by (rule lem) (* lem instantiated to True *)
qed
subsection {* Instantiation in a context with target *}
lemma (in L4)
fixes A (infixl "$" 60)
assumes A: "L4(A)"
shows "(x::i) $ y $ z $ w = y $ x $ w $ z"
proof -
from A interpret A: L4 ["A"] by (auto intro: L4.axioms)
show ?thesis by (simp only: A.OP.AC)
qed
end