bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
(* Title : FrechetDeriv.thy
Author : Brian Huffman
*)
header {* Frechet Derivative *}
theory FrechetDeriv
imports Lim Complex_Main
begin
definition
fderiv ::
"['a::real_normed_vector \<Rightarrow> 'b::real_normed_vector, 'a, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
-- {* Frechet derivative: D is derivative of function f at x *}
("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
"FDERIV f x :> D = (bounded_linear D \<and>
(\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
lemma FDERIV_I:
"\<lbrakk>bounded_linear D; (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0\<rbrakk>
\<Longrightarrow> FDERIV f x :> D"
by (simp add: fderiv_def)
lemma FDERIV_D:
"FDERIV f x :> D \<Longrightarrow> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0"
by (simp add: fderiv_def)
lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
by (simp add: fderiv_def)
lemma bounded_linear_zero:
"bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
proof
show "(0::'b) = 0 + 0" by simp
fix r show "(0::'b) = scaleR r 0" by simp
have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
qed
lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
by (simp add: fderiv_def bounded_linear_zero)
lemma bounded_linear_ident:
"bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
proof
fix x y :: 'a show "x + y = x + y" by simp
fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
qed
lemma FDERIV_ident: "FDERIV (\<lambda>x. x) x :> (\<lambda>h. h)"
by (simp add: fderiv_def bounded_linear_ident)
subsection {* Addition *}
lemma add_diff_add:
fixes a b c d :: "'a::ab_group_add"
shows "(a + c) - (b + d) = (a - b) + (c - d)"
by simp
lemma bounded_linear_add:
assumes "bounded_linear f"
assumes "bounded_linear g"
shows "bounded_linear (\<lambda>x. f x + g x)"
proof -
interpret f: bounded_linear f by fact
interpret g: bounded_linear g by fact
show ?thesis apply (unfold_locales)
apply (simp only: f.add g.add add_ac)
apply (simp only: f.scaleR g.scaleR scaleR_right_distrib)
apply (rule f.pos_bounded [THEN exE], rename_tac Kf)
apply (rule g.pos_bounded [THEN exE], rename_tac Kg)
apply (rule_tac x="Kf + Kg" in exI, safe)
apply (subst right_distrib)
apply (rule order_trans [OF norm_triangle_ineq])
apply (rule add_mono, erule spec, erule spec)
done
qed
lemma norm_ratio_ineq:
fixes x y :: "'a::real_normed_vector"
fixes h :: "'b::real_normed_vector"
shows "norm (x + y) / norm h \<le> norm x / norm h + norm y / norm h"
apply (rule ord_le_eq_trans)
apply (rule divide_right_mono)
apply (rule norm_triangle_ineq)
apply (rule norm_ge_zero)
apply (rule add_divide_distrib)
done
lemma FDERIV_add:
assumes f: "FDERIV f x :> F"
assumes g: "FDERIV g x :> G"
shows "FDERIV (\<lambda>x. f x + g x) x :> (\<lambda>h. F h + G h)"
proof (rule FDERIV_I)
show "bounded_linear (\<lambda>h. F h + G h)"
apply (rule bounded_linear_add)
apply (rule FDERIV_bounded_linear [OF f])
apply (rule FDERIV_bounded_linear [OF g])
done
next
have f': "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
using f by (rule FDERIV_D)
have g': "(\<lambda>h. norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
using g by (rule FDERIV_D)
from f' g'
have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h
+ norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
by (rule LIM_add_zero)
thus "(\<lambda>h. norm (f (x + h) + g (x + h) - (f x + g x) - (F h + G h))
/ norm h) -- 0 --> 0"
apply (rule real_LIM_sandwich_zero)
apply (simp add: divide_nonneg_pos)
apply (simp only: add_diff_add)
apply (rule norm_ratio_ineq)
done
qed
subsection {* Subtraction *}
lemma bounded_linear_minus:
assumes "bounded_linear f"
shows "bounded_linear (\<lambda>x. - f x)"
proof -
interpret f: bounded_linear f by fact
show ?thesis apply (unfold_locales)
apply (simp add: f.add)
apply (simp add: f.scaleR)
apply (simp add: f.bounded)
done
qed
lemma FDERIV_minus:
"FDERIV f x :> F \<Longrightarrow> FDERIV (\<lambda>x. - f x) x :> (\<lambda>h. - F h)"
apply (rule FDERIV_I)
apply (rule bounded_linear_minus)
apply (erule FDERIV_bounded_linear)
apply (simp only: fderiv_def minus_diff_minus norm_minus_cancel)
done
lemma FDERIV_diff:
"\<lbrakk>FDERIV f x :> F; FDERIV g x :> G\<rbrakk>
\<Longrightarrow> FDERIV (\<lambda>x. f x - g x) x :> (\<lambda>h. F h - G h)"
by (simp only: diff_minus FDERIV_add FDERIV_minus)
subsection {* Continuity *}
lemma FDERIV_isCont:
assumes f: "FDERIV f x :> F"
shows "isCont f x"
proof -
from f interpret F: bounded_linear "F" by (rule FDERIV_bounded_linear)
have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
by (rule FDERIV_D [OF f])
hence "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h * norm h) -- 0 --> 0"
by (intro LIM_mult_zero LIM_norm_zero LIM_ident)
hence "(\<lambda>h. norm (f (x + h) - f x - F h)) -- 0 --> 0"
by (simp cong: LIM_cong)
hence "(\<lambda>h. f (x + h) - f x - F h) -- 0 --> 0"
by (rule LIM_norm_zero_cancel)
hence "(\<lambda>h. f (x + h) - f x - F h + F h) -- 0 --> 0"
by (intro LIM_add_zero F.LIM_zero LIM_ident)
hence "(\<lambda>h. f (x + h) - f x) -- 0 --> 0"
by simp
thus "isCont f x"
unfolding isCont_iff by (rule LIM_zero_cancel)
qed
subsection {* Composition *}
lemma real_divide_cancel_lemma:
fixes a b c :: real
shows "(b = 0 \<Longrightarrow> a = 0) \<Longrightarrow> (a / b) * (b / c) = a / c"
by simp
lemma bounded_linear_compose:
assumes "bounded_linear f"
assumes "bounded_linear g"
shows "bounded_linear (\<lambda>x. f (g x))"
proof -
interpret f: bounded_linear f by fact
interpret g: bounded_linear g by fact
show ?thesis proof (unfold_locales)
fix x y show "f (g (x + y)) = f (g x) + f (g y)"
by (simp only: f.add g.add)
next
fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))"
by (simp only: f.scaleR g.scaleR)
next
from f.pos_bounded
obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast
from g.pos_bounded
obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast
show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K"
proof (intro exI allI)
fix x
have "norm (f (g x)) \<le> norm (g x) * Kf"
using f .
also have "\<dots> \<le> (norm x * Kg) * Kf"
using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
by (rule mult_assoc)
finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" .
qed
qed
qed
lemma FDERIV_compose:
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
fixes g :: "'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector"
assumes f: "FDERIV f x :> F"
assumes g: "FDERIV g (f x) :> G"
shows "FDERIV (\<lambda>x. g (f x)) x :> (\<lambda>h. G (F h))"
proof (rule FDERIV_I)
from FDERIV_bounded_linear [OF g] FDERIV_bounded_linear [OF f]
show "bounded_linear (\<lambda>h. G (F h))"
by (rule bounded_linear_compose)
next
let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
let ?Rg = "\<lambda>k. g (f x + k) - g (f x) - G k"
let ?k = "\<lambda>h. f (x + h) - f x"
let ?Nf = "\<lambda>h. norm (?Rf h) / norm h"
let ?Ng = "\<lambda>h. norm (?Rg (?k h)) / norm (?k h)"
from f interpret F: bounded_linear "F" by (rule FDERIV_bounded_linear)
from g interpret G: bounded_linear "G" by (rule FDERIV_bounded_linear)
from F.bounded obtain kF where kF: "\<And>x. norm (F x) \<le> norm x * kF" by fast
from G.bounded obtain kG where kG: "\<And>x. norm (G x) \<le> norm x * kG" by fast
let ?fun2 = "\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)"
show "(\<lambda>h. norm (g (f (x + h)) - g (f x) - G (F h)) / norm h) -- 0 --> 0"
proof (rule real_LIM_sandwich_zero)
have Nf: "?Nf -- 0 --> 0"
using FDERIV_D [OF f] .
have Ng1: "isCont (\<lambda>k. norm (?Rg k) / norm k) 0"
by (simp add: isCont_def FDERIV_D [OF g])
have Ng2: "?k -- 0 --> 0"
apply (rule LIM_zero)
apply (fold isCont_iff)
apply (rule FDERIV_isCont [OF f])
done
have Ng: "?Ng -- 0 --> 0"
using isCont_LIM_compose [OF Ng1 Ng2] by simp
have "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF))
-- 0 --> 0 * kG + 0 * (0 + kF)"
by (intro LIM_add LIM_mult LIM_const Nf Ng)
thus "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)) -- 0 --> 0"
by simp
next
fix h::'a assume h: "h \<noteq> 0"
thus "0 \<le> norm (g (f (x + h)) - g (f x) - G (F h)) / norm h"
by (simp add: divide_nonneg_pos)
next
fix h::'a assume h: "h \<noteq> 0"
have "g (f (x + h)) - g (f x) - G (F h) = G (?Rf h) + ?Rg (?k h)"
by (simp add: G.diff)
hence "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
= norm (G (?Rf h) + ?Rg (?k h)) / norm h"
by (rule arg_cong)
also have "\<dots> \<le> norm (G (?Rf h)) / norm h + norm (?Rg (?k h)) / norm h"
by (rule norm_ratio_ineq)
also have "\<dots> \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)"
proof (rule add_mono)
show "norm (G (?Rf h)) / norm h \<le> ?Nf h * kG"
apply (rule ord_le_eq_trans)
apply (rule divide_right_mono [OF kG norm_ge_zero])
apply simp
done
next
have "norm (?Rg (?k h)) / norm h = ?Ng h * (norm (?k h) / norm h)"
apply (rule real_divide_cancel_lemma [symmetric])
apply (simp add: G.zero)
done
also have "\<dots> \<le> ?Ng h * (?Nf h + kF)"
proof (rule mult_left_mono)
have "norm (?k h) / norm h = norm (?Rf h + F h) / norm h"
by simp
also have "\<dots> \<le> ?Nf h + norm (F h) / norm h"
by (rule norm_ratio_ineq)
also have "\<dots> \<le> ?Nf h + kF"
apply (rule add_left_mono)
apply (subst pos_divide_le_eq, simp add: h)
apply (subst mult_commute)
apply (rule kF)
done
finally show "norm (?k h) / norm h \<le> ?Nf h + kF" .
next
show "0 \<le> ?Ng h"
apply (case_tac "f (x + h) - f x = 0", simp)
apply (rule divide_nonneg_pos [OF norm_ge_zero])
apply simp
done
qed
finally show "norm (?Rg (?k h)) / norm h \<le> ?Ng h * (?Nf h + kF)" .
qed
finally show "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
\<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)" .
qed
qed
subsection {* Product Rule *}
lemma (in bounded_bilinear) FDERIV_lemma:
"a' ** b' - a ** b - (a ** B + A ** b)
= a ** (b' - b - B) + (a' - a - A) ** b' + A ** (b' - b)"
by (simp add: diff_left diff_right)
lemma (in bounded_bilinear) FDERIV:
fixes x :: "'d::real_normed_vector"
assumes f: "FDERIV f x :> F"
assumes g: "FDERIV g x :> G"
shows "FDERIV (\<lambda>x. f x ** g x) x :> (\<lambda>h. f x ** G h + F h ** g x)"
proof (rule FDERIV_I)
show "bounded_linear (\<lambda>h. f x ** G h + F h ** g x)"
apply (rule bounded_linear_add)
apply (rule bounded_linear_compose [OF bounded_linear_right])
apply (rule FDERIV_bounded_linear [OF g])
apply (rule bounded_linear_compose [OF bounded_linear_left])
apply (rule FDERIV_bounded_linear [OF f])
done
next
from bounded_linear.bounded [OF FDERIV_bounded_linear [OF f]]
obtain KF where norm_F: "\<And>x. norm (F x) \<le> norm x * KF" by fast
from pos_bounded obtain K where K: "0 < K" and norm_prod:
"\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
let ?Rg = "\<lambda>h. g (x + h) - g x - G h"
let ?fun1 = "\<lambda>h.
norm (f x ** ?Rg h + ?Rf h ** g (x + h) + F h ** (g (x + h) - g x)) /
norm h"
let ?fun2 = "\<lambda>h.
norm (f x) * (norm (?Rg h) / norm h) * K +
norm (?Rf h) / norm h * norm (g (x + h)) * K +
KF * norm (g (x + h) - g x) * K"
have "?fun1 -- 0 --> 0"
proof (rule real_LIM_sandwich_zero)
from f g isCont_iff [THEN iffD1, OF FDERIV_isCont [OF g]]
have "?fun2 -- 0 -->
norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K"
by (intro LIM_add LIM_mult LIM_const LIM_norm LIM_zero FDERIV_D)
thus "?fun2 -- 0 --> 0"
by simp
next
fix h::'d assume "h \<noteq> 0"
thus "0 \<le> ?fun1 h"
by (simp add: divide_nonneg_pos)
next
fix h::'d assume "h \<noteq> 0"
have "?fun1 h \<le> (norm (f x) * norm (?Rg h) * K +
norm (?Rf h) * norm (g (x + h)) * K +
norm h * KF * norm (g (x + h) - g x) * K) / norm h"
by (intro
divide_right_mono mult_mono'
order_trans [OF norm_triangle_ineq add_mono]
order_trans [OF norm_prod mult_right_mono]
mult_nonneg_nonneg order_refl norm_ge_zero norm_F
K [THEN order_less_imp_le]
)
also have "\<dots> = ?fun2 h"
by (simp add: add_divide_distrib)
finally show "?fun1 h \<le> ?fun2 h" .
qed
thus "(\<lambda>h.
norm (f (x + h) ** g (x + h) - f x ** g x - (f x ** G h + F h ** g x))
/ norm h) -- 0 --> 0"
by (simp only: FDERIV_lemma)
qed
lemmas FDERIV_mult = mult.FDERIV
lemmas FDERIV_scaleR = scaleR.FDERIV
subsection {* Powers *}
lemma FDERIV_power_Suc:
fixes x :: "'a::{real_normed_algebra,comm_ring_1}"
shows "FDERIV (\<lambda>x. x ^ Suc n) x :> (\<lambda>h. (1 + of_nat n) * x ^ n * h)"
apply (induct n)
apply (simp add: power_Suc FDERIV_ident)
apply (drule FDERIV_mult [OF FDERIV_ident])
apply (simp only: of_nat_Suc left_distrib mult_1_left)
apply (simp only: power_Suc right_distrib add_ac mult_ac)
done
lemma FDERIV_power:
fixes x :: "'a::{real_normed_algebra,comm_ring_1}"
shows "FDERIV (\<lambda>x. x ^ n) x :> (\<lambda>h. of_nat n * x ^ (n - 1) * h)"
apply (cases n)
apply (simp add: FDERIV_const)
apply (simp add: FDERIV_power_Suc del: power_Suc)
done
subsection {* Inverse *}
lemma inverse_diff_inverse:
"\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
\<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
lemmas bounded_linear_mult_const =
mult.bounded_linear_left [THEN bounded_linear_compose]
lemmas bounded_linear_const_mult =
mult.bounded_linear_right [THEN bounded_linear_compose]
lemma FDERIV_inverse:
fixes x :: "'a::real_normed_div_algebra"
assumes x: "x \<noteq> 0"
shows "FDERIV inverse x :> (\<lambda>h. - (inverse x * h * inverse x))"
(is "FDERIV ?inv _ :> _")
proof (rule FDERIV_I)
show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
apply (rule bounded_linear_minus)
apply (rule bounded_linear_mult_const)
apply (rule bounded_linear_const_mult)
apply (rule bounded_linear_ident)
done
next
show "(\<lambda>h. norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h)
-- 0 --> 0"
proof (rule LIM_equal2)
show "0 < norm x" using x by simp
next
fix h::'a
assume 1: "h \<noteq> 0"
assume "norm (h - 0) < norm x"
hence "h \<noteq> -x" by clarsimp
hence 2: "x + h \<noteq> 0"
apply (rule contrapos_nn)
apply (rule sym)
apply (erule equals_zero_I)
done
show "norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h
= norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
apply (subst inverse_diff_inverse [OF 2 x])
apply (subst minus_diff_minus)
apply (subst norm_minus_cancel)
apply (simp add: left_diff_distrib)
done
next
show "(\<lambda>h. norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h)
-- 0 --> 0"
proof (rule real_LIM_sandwich_zero)
show "(\<lambda>h. norm (?inv (x + h) - ?inv x) * norm (?inv x))
-- 0 --> 0"
apply (rule LIM_mult_left_zero)
apply (rule LIM_norm_zero)
apply (rule LIM_zero)
apply (rule LIM_offset_zero)
apply (rule LIM_inverse)
apply (rule LIM_ident)
apply (rule x)
done
next
fix h::'a assume h: "h \<noteq> 0"
show "0 \<le> norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
apply (rule divide_nonneg_pos)
apply (rule norm_ge_zero)
apply (simp add: h)
done
next
fix h::'a assume h: "h \<noteq> 0"
have "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
\<le> norm (?inv (x + h) - ?inv x) * norm h * norm (?inv x) / norm h"
apply (rule divide_right_mono [OF _ norm_ge_zero])
apply (rule order_trans [OF norm_mult_ineq])
apply (rule mult_right_mono [OF _ norm_ge_zero])
apply (rule norm_mult_ineq)
done
also have "\<dots> = norm (?inv (x + h) - ?inv x) * norm (?inv x)"
by simp
finally show "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
\<le> norm (?inv (x + h) - ?inv x) * norm (?inv x)" .
qed
qed
qed
subsection {* Alternate definition *}
lemma field_fderiv_def:
fixes x :: "'a::real_normed_field" shows
"FDERIV f x :> (\<lambda>h. h * D) = (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
apply (unfold fderiv_def)
apply (simp add: mult.bounded_linear_left)
apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
apply (subst diff_divide_distrib)
apply (subst times_divide_eq_left [symmetric])
apply (simp cong: LIM_cong)
apply (simp add: LIM_norm_zero_iff LIM_zero_iff)
done
end