bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
(* Title: HOL/Library/Zorn.thy
Author: Jacques D. Fleuriot, Tobias Nipkow
Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).
The well-ordering theorem.
*)
header {* Zorn's Lemma *}
theory Zorn
imports Order_Relation Main
begin
(* Define globally? In Set.thy? *)
definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^bsub>\<subseteq>\<^esub>") where
"chain\<^bsub>\<subseteq>\<^esub> C \<equiv> \<forall>A\<in>C.\<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A"
text{*
The lemma and section numbers refer to an unpublished article
\cite{Abrial-Laffitte}.
*}
definition
chain :: "'a set set => 'a set set set" where
"chain S = {F. F \<subseteq> S & chain\<^bsub>\<subseteq>\<^esub> F}"
definition
super :: "['a set set,'a set set] => 'a set set set" where
"super S c = {d. d \<in> chain S & c \<subset> d}"
definition
maxchain :: "'a set set => 'a set set set" where
"maxchain S = {c. c \<in> chain S & super S c = {}}"
definition
succ :: "['a set set,'a set set] => 'a set set" where
"succ S c =
(if c \<notin> chain S | c \<in> maxchain S
then c else SOME c'. c' \<in> super S c)"
inductive_set
TFin :: "'a set set => 'a set set set"
for S :: "'a set set"
where
succI: "x \<in> TFin S ==> succ S x \<in> TFin S"
| Pow_UnionI: "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
subsection{*Mathematical Preamble*}
lemma Union_lemma0:
"(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C) \<subseteq> A | B \<subseteq> Union(C)"
by blast
text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
lemma Abrial_axiom1: "x \<subseteq> succ S x"
apply (auto simp add: succ_def super_def maxchain_def)
apply (rule contrapos_np, assumption)
apply (rule_tac Q="\<lambda>S. xa \<in> S" in someI2, blast+)
done
lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
lemma TFin_induct:
assumes H: "n \<in> TFin S"
and I: "!!x. x \<in> TFin S ==> P x ==> P (succ S x)"
"!!Y. Y \<subseteq> TFin S ==> Ball Y P ==> P(Union Y)"
shows "P n" using H
apply (induct rule: TFin.induct [where P=P])
apply (blast intro: I)+
done
lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
apply (erule subset_trans)
apply (rule Abrial_axiom1)
done
text{*Lemma 1 of section 3.1*}
lemma TFin_linear_lemma1:
"[| n \<in> TFin S; m \<in> TFin S;
\<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m
|] ==> n \<subseteq> m | succ S m \<subseteq> n"
apply (erule TFin_induct)
apply (erule_tac [2] Union_lemma0)
apply (blast del: subsetI intro: succ_trans)
done
text{* Lemma 2 of section 3.2 *}
lemma TFin_linear_lemma2:
"m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
apply (erule TFin_induct)
apply (rule impI [THEN ballI])
txt{*case split using @{text TFin_linear_lemma1}*}
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
assumption+)
apply (drule_tac x = n in bspec, assumption)
apply (blast del: subsetI intro: succ_trans, blast)
txt{*second induction step*}
apply (rule impI [THEN ballI])
apply (rule Union_lemma0 [THEN disjE])
apply (rule_tac [3] disjI2)
prefer 2 apply blast
apply (rule ballI)
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
assumption+, auto)
apply (blast intro!: Abrial_axiom1 [THEN subsetD])
done
text{*Re-ordering the premises of Lemma 2*}
lemma TFin_subsetD:
"[| n \<subseteq> m; m \<in> TFin S; n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
by (rule TFin_linear_lemma2 [rule_format])
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
lemma TFin_subset_linear: "[| m \<in> TFin S; n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
apply (rule disjE)
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
apply (assumption+, erule disjI2)
apply (blast del: subsetI
intro: subsetI Abrial_axiom1 [THEN subset_trans])
done
text{*Lemma 3 of section 3.3*}
lemma eq_succ_upper: "[| n \<in> TFin S; m \<in> TFin S; m = succ S m |] ==> n \<subseteq> m"
apply (erule TFin_induct)
apply (drule TFin_subsetD)
apply (assumption+, force, blast)
done
text{*Property 3.3 of section 3.3*}
lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
apply (rule iffI)
apply (rule Union_upper [THEN equalityI])
apply assumption
apply (rule eq_succ_upper [THEN Union_least], assumption+)
apply (erule ssubst)
apply (rule Abrial_axiom1 [THEN equalityI])
apply (blast del: subsetI intro: subsetI TFin_UnionI TFin.succI)
done
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
text{*NB: We assume the partial ordering is @{text "\<subseteq>"},
the subset relation!*}
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
by (unfold chain_def chain_subset_def) auto
lemma super_subset_chain: "super S c \<subseteq> chain S"
by (unfold super_def) blast
lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
by (unfold maxchain_def) blast
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> EX d. d \<in> super S c"
by (unfold super_def maxchain_def) auto
lemma select_super:
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c): super S c"
apply (erule mem_super_Ex [THEN exE])
apply (rule someI2 [where Q="%X. X : super S c"], auto)
done
lemma select_not_equals:
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c) \<noteq> c"
apply (rule notI)
apply (drule select_super)
apply (simp add: super_def less_le)
done
lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (\<some>c'. c': super S c)"
by (unfold succ_def) (blast intro!: if_not_P)
lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
apply (frule succI3)
apply (simp (no_asm_simp))
apply (rule select_not_equals, assumption)
done
lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
apply (erule TFin_induct)
apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
apply (unfold chain_def chain_subset_def)
apply (rule CollectI, safe)
apply (drule bspec, assumption)
apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE],
best+)
done
theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
apply (rule_tac x = "Union (TFin S)" in exI)
apply (rule classical)
apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
prefer 2
apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric])
apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
apply (drule DiffI [THEN succ_not_equals], blast+)
done
subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then
There Is a Maximal Element*}
lemma chain_extend:
"[| c \<in> chain S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chain S"
by (unfold chain_def chain_subset_def) blast
lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
by auto
lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
by auto
lemma maxchain_Zorn:
"[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
apply (rule ccontr)
apply (simp add: maxchain_def)
apply (erule conjE)
apply (subgoal_tac "({u} Un c) \<in> super S c")
apply simp
apply (unfold super_def less_le)
apply (blast intro: chain_extend dest: chain_Union_upper)
done
theorem Zorn_Lemma:
"\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
apply (cut_tac Hausdorff maxchain_subset_chain)
apply (erule exE)
apply (drule subsetD, assumption)
apply (drule bspec, assumption)
apply (rule_tac x = "Union(c)" in bexI)
apply (rule ballI, rule impI)
apply (blast dest!: maxchain_Zorn, assumption)
done
subsection{*Alternative version of Zorn's Lemma*}
lemma Zorn_Lemma2:
"\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
apply (cut_tac Hausdorff maxchain_subset_chain)
apply (erule exE)
apply (drule subsetD, assumption)
apply (drule bspec, assumption, erule bexE)
apply (rule_tac x = y in bexI)
prefer 2 apply assumption
apply clarify
apply (rule ccontr)
apply (frule_tac z = x in chain_extend)
apply (assumption, blast)
apply (unfold maxchain_def super_def less_le)
apply (blast elim!: equalityCE)
done
text{*Various other lemmas*}
lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
by (unfold chain_def chain_subset_def) blast
lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
by (unfold chain_def) blast
(* Define globally? In Relation.thy? *)
definition Chain :: "('a*'a)set \<Rightarrow> 'a set set" where
"Chain r \<equiv> {A. \<forall>a\<in>A.\<forall>b\<in>A. (a,b) : r \<or> (b,a) \<in> r}"
lemma mono_Chain: "r \<subseteq> s \<Longrightarrow> Chain r \<subseteq> Chain s"
unfolding Chain_def by blast
text{* Zorn's lemma for partial orders: *}
lemma Zorns_po_lemma:
assumes po: "Partial_order r" and u: "\<forall>C\<in>Chain r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a,u):r"
shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m,a):r \<longrightarrow> a=m"
proof-
have "Preorder r" using po by(simp add:partial_order_on_def)
--{* Mirror r in the set of subsets below (wrt r) elements of A*}
let ?B = "%x. r^-1 `` {x}" let ?S = "?B ` Field r"
have "\<forall>C \<in> chain ?S. EX U:?S. ALL A:C. A\<subseteq>U"
proof (auto simp:chain_def chain_subset_def)
fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C.\<forall>B\<in>C. A\<subseteq>B | B\<subseteq>A"
let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
have "C = ?B ` ?A" using 1 by(auto simp: image_def)
have "?A\<in>Chain r"
proof (simp add:Chain_def, intro allI impI, elim conjE)
fix a b
assume "a \<in> Field r" "?B a \<in> C" "b \<in> Field r" "?B b \<in> C"
hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto
thus "(a, b) \<in> r \<or> (b, a) \<in> r" using `Preorder r` `a:Field r` `b:Field r`
by (simp add:subset_Image1_Image1_iff)
qed
then obtain u where uA: "u:Field r" "\<forall>a\<in>?A. (a,u) : r" using u by auto
have "\<forall>A\<in>C. A \<subseteq> r^-1 `` {u}" (is "?P u")
proof auto
fix a B assume aB: "B:C" "a:B"
with 1 obtain x where "x:Field r" "B = r^-1 `` {x}" by auto
thus "(a,u) : r" using uA aB `Preorder r`
by (auto simp add: preorder_on_def refl_on_def) (metis transD)
qed
thus "EX u:Field r. ?P u" using `u:Field r` by blast
qed
from Zorn_Lemma2[OF this]
obtain m B where "m:Field r" "B = r^-1 `` {m}"
"\<forall>x\<in>Field r. B \<subseteq> r^-1 `` {x} \<longrightarrow> B = r^-1 `` {x}"
by auto
hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" using po `Preorder r` `m:Field r`
by(auto simp:subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)
thus ?thesis using `m:Field r` by blast
qed
(* The initial segment of a relation appears generally useful.
Move to Relation.thy?
Definition correct/most general?
Naming?
*)
definition init_seg_of :: "(('a*'a)set * ('a*'a)set)set" where
"init_seg_of == {(r,s). r \<subseteq> s \<and> (\<forall>a b c. (a,b):s \<and> (b,c):r \<longrightarrow> (a,b):r)}"
abbreviation initialSegmentOf :: "('a*'a)set \<Rightarrow> ('a*'a)set \<Rightarrow> bool"
(infix "initial'_segment'_of" 55) where
"r initial_segment_of s == (r,s):init_seg_of"
lemma refl_on_init_seg_of[simp]: "r initial_segment_of r"
by(simp add:init_seg_of_def)
lemma trans_init_seg_of:
"r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"
by(simp (no_asm_use) add: init_seg_of_def)
(metis Domain_iff UnCI Un_absorb2 subset_trans)
lemma antisym_init_seg_of:
"r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r=s"
by(auto simp:init_seg_of_def)
lemma Chain_init_seg_of_Union:
"R \<in> Chain init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"
by(auto simp add:init_seg_of_def Chain_def Ball_def) blast
lemma chain_subset_trans_Union:
"chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. trans r \<Longrightarrow> trans(\<Union>R)"
apply(auto simp add:chain_subset_def)
apply(simp (no_asm_use) add:trans_def)
apply (metis subsetD)
done
lemma chain_subset_antisym_Union:
"chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. antisym r \<Longrightarrow> antisym(\<Union>R)"
apply(auto simp add:chain_subset_def antisym_def)
apply (metis subsetD)
done
lemma chain_subset_Total_Union:
assumes "chain\<^bsub>\<subseteq>\<^esub> R" "\<forall>r\<in>R. Total r"
shows "Total (\<Union>R)"
proof (simp add: total_on_def Ball_def, auto del:disjCI)
fix r s a b assume A: "r:R" "s:R" "a:Field r" "b:Field s" "a\<noteq>b"
from `chain\<^bsub>\<subseteq>\<^esub> R` `r:R` `s:R` have "r\<subseteq>s \<or> s\<subseteq>r"
by(simp add:chain_subset_def)
thus "(\<exists>r\<in>R. (a,b) \<in> r) \<or> (\<exists>r\<in>R. (b,a) \<in> r)"
proof
assume "r\<subseteq>s" hence "(a,b):s \<or> (b,a):s" using assms(2) A
by(simp add:total_on_def)(metis mono_Field subsetD)
thus ?thesis using `s:R` by blast
next
assume "s\<subseteq>r" hence "(a,b):r \<or> (b,a):r" using assms(2) A
by(simp add:total_on_def)(metis mono_Field subsetD)
thus ?thesis using `r:R` by blast
qed
qed
lemma wf_Union_wf_init_segs:
assumes "R \<in> Chain init_seg_of" and "\<forall>r\<in>R. wf r" shows "wf(\<Union>R)"
proof(simp add:wf_iff_no_infinite_down_chain, rule ccontr, auto)
fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f(Suc i), f i) \<in> r"
then obtain r where "r:R" and "(f(Suc 0), f 0) : r" by auto
{ fix i have "(f(Suc i), f i) \<in> r"
proof(induct i)
case 0 show ?case by fact
next
case (Suc i)
moreover obtain s where "s\<in>R" and "(f(Suc(Suc i)), f(Suc i)) \<in> s"
using 1 by auto
moreover hence "s initial_segment_of r \<or> r initial_segment_of s"
using assms(1) `r:R` by(simp add: Chain_def)
ultimately show ?case by(simp add:init_seg_of_def) blast
qed
}
thus False using assms(2) `r:R`
by(simp add:wf_iff_no_infinite_down_chain) blast
qed
lemma initial_segment_of_Diff:
"p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"
unfolding init_seg_of_def by blast
lemma Chain_inits_DiffI:
"R \<in> Chain init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chain init_seg_of"
unfolding Chain_def by (blast intro: initial_segment_of_Diff)
theorem well_ordering: "\<exists>r::('a*'a)set. Well_order r \<and> Field r = UNIV"
proof-
-- {*The initial segment relation on well-orders: *}
let ?WO = "{r::('a*'a)set. Well_order r}"
def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"
have I_init: "I \<subseteq> init_seg_of" by(auto simp:I_def)
hence subch: "!!R. R : Chain I \<Longrightarrow> chain\<^bsub>\<subseteq>\<^esub> R"
by(auto simp:init_seg_of_def chain_subset_def Chain_def)
have Chain_wo: "!!R r. R \<in> Chain I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"
by(simp add:Chain_def I_def) blast
have FI: "Field I = ?WO" by(auto simp add:I_def init_seg_of_def Field_def)
hence 0: "Partial_order I"
by(auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def trans_def I_def elim!: trans_init_seg_of)
-- {*I-chains have upper bounds in ?WO wrt I: their Union*}
{ fix R assume "R \<in> Chain I"
hence Ris: "R \<in> Chain init_seg_of" using mono_Chain[OF I_init] by blast
have subch: "chain\<^bsub>\<subseteq>\<^esub> R" using `R : Chain I` I_init
by(auto simp:init_seg_of_def chain_subset_def Chain_def)
have "\<forall>r\<in>R. Refl r" "\<forall>r\<in>R. trans r" "\<forall>r\<in>R. antisym r" "\<forall>r\<in>R. Total r"
"\<forall>r\<in>R. wf(r-Id)"
using Chain_wo[OF `R \<in> Chain I`] by(simp_all add:order_on_defs)
have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by(auto simp:refl_on_def)
moreover have "trans (\<Union>R)"
by(rule chain_subset_trans_Union[OF subch `\<forall>r\<in>R. trans r`])
moreover have "antisym(\<Union>R)"
by(rule chain_subset_antisym_Union[OF subch `\<forall>r\<in>R. antisym r`])
moreover have "Total (\<Union>R)"
by(rule chain_subset_Total_Union[OF subch `\<forall>r\<in>R. Total r`])
moreover have "wf((\<Union>R)-Id)"
proof-
have "(\<Union>R)-Id = \<Union>{r-Id|r. r \<in> R}" by blast
with `\<forall>r\<in>R. wf(r-Id)` wf_Union_wf_init_segs[OF Chain_inits_DiffI[OF Ris]]
show ?thesis by (simp (no_asm_simp)) blast
qed
ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs)
moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris
by(simp add: Chain_init_seg_of_Union)
ultimately have "\<Union>R : ?WO \<and> (\<forall>r\<in>R. (r,\<Union>R) : I)"
using mono_Chain[OF I_init] `R \<in> Chain I`
by(simp (no_asm) add:I_def del:Field_Union)(metis Chain_wo subsetD)
}
hence 1: "\<forall>R \<in> Chain I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r,u) : I" by (subst FI) blast
--{*Zorn's Lemma yields a maximal well-order m:*}
then obtain m::"('a*'a)set" where "Well_order m" and
max: "\<forall>r. Well_order r \<and> (m,r):I \<longrightarrow> r=m"
using Zorns_po_lemma[OF 0 1] by (auto simp:FI)
--{*Now show by contradiction that m covers the whole type:*}
{ fix x::'a assume "x \<notin> Field m"
--{*We assume that x is not covered and extend m at the top with x*}
have "m \<noteq> {}"
proof
assume "m={}"
moreover have "Well_order {(x,x)}"
by(simp add:order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def Domain_def Range_def)
ultimately show False using max
by (auto simp:I_def init_seg_of_def simp del:Field_insert)
qed
hence "Field m \<noteq> {}" by(auto simp:Field_def)
moreover have "wf(m-Id)" using `Well_order m`
by(simp add:well_order_on_def)
--{*The extension of m by x:*}
let ?s = "{(a,x)|a. a : Field m}" let ?m = "insert (x,x) m Un ?s"
have Fm: "Field ?m = insert x (Field m)"
apply(simp add:Field_insert Field_Un)
unfolding Field_def by auto
have "Refl m" "trans m" "antisym m" "Total m" "wf(m-Id)"
using `Well_order m` by(simp_all add:order_on_defs)
--{*We show that the extension is a well-order*}
have "Refl ?m" using `Refl m` Fm by(auto simp:refl_on_def)
moreover have "trans ?m" using `trans m` `x \<notin> Field m`
unfolding trans_def Field_def Domain_def Range_def by blast
moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`
unfolding antisym_def Field_def Domain_def Range_def by blast
moreover have "Total ?m" using `Total m` Fm by(auto simp: total_on_def)
moreover have "wf(?m-Id)"
proof-
have "wf ?s" using `x \<notin> Field m`
by(auto simp add:wf_eq_minimal Field_def Domain_def Range_def) metis
thus ?thesis using `wf(m-Id)` `x \<notin> Field m`
wf_subset[OF `wf ?s` Diff_subset]
by (fastsimp intro!: wf_Un simp add: Un_Diff Field_def)
qed
ultimately have "Well_order ?m" by(simp add:order_on_defs)
--{*We show that the extension is above m*}
moreover hence "(m,?m) : I" using `Well_order m` `x \<notin> Field m`
by(fastsimp simp:I_def init_seg_of_def Field_def Domain_def Range_def)
ultimately
--{*This contradicts maximality of m:*}
have False using max `x \<notin> Field m` unfolding Field_def by blast
}
hence "Field m = UNIV" by auto
moreover with `Well_order m` have "Well_order m" by simp
ultimately show ?thesis by blast
qed
corollary well_order_on: "\<exists>r::('a*'a)set. well_order_on A r"
proof -
obtain r::"('a*'a)set" where wo: "Well_order r" and univ: "Field r = UNIV"
using well_ordering[where 'a = "'a"] by blast
let ?r = "{(x,y). x:A & y:A & (x,y):r}"
have 1: "Field ?r = A" using wo univ
by(fastsimp simp: Field_def Domain_def Range_def order_on_defs refl_on_def)
have "Refl r" "trans r" "antisym r" "Total r" "wf(r-Id)"
using `Well_order r` by(simp_all add:order_on_defs)
have "Refl ?r" using `Refl r` by(auto simp:refl_on_def 1 univ)
moreover have "trans ?r" using `trans r`
unfolding trans_def by blast
moreover have "antisym ?r" using `antisym r`
unfolding antisym_def by blast
moreover have "Total ?r" using `Total r` by(simp add:total_on_def 1 univ)
moreover have "wf(?r - Id)" by(rule wf_subset[OF `wf(r-Id)`]) blast
ultimately have "Well_order ?r" by(simp add:order_on_defs)
with 1 show ?thesis by metis
qed
end