load_thy/after_load: explicit check of parent theories, which might have failed to join proofs -- avoid uninformative crash via Graph.UNDEF;
(* Title:      Bit.thy
   Author:     Brian Huffman
*)
header {* The Field of Integers mod 2 *}
theory Bit
imports Main
begin
subsection {* Bits as a datatype *}
typedef (open) bit = "UNIV :: bool set" ..
instantiation bit :: "{zero, one}"
begin
definition zero_bit_def:
  "0 = Abs_bit False"
definition one_bit_def:
  "1 = Abs_bit True"
instance ..
end
rep_datatype (bit) "0::bit" "1::bit"
proof -
  fix P and x :: bit
  assume "P (0::bit)" and "P (1::bit)"
  then have "\<forall>b. P (Abs_bit b)"
    unfolding zero_bit_def one_bit_def
    by (simp add: all_bool_eq)
  then show "P x"
    by (induct x) simp
next
  show "(0::bit) \<noteq> (1::bit)"
    unfolding zero_bit_def one_bit_def
    by (simp add: Abs_bit_inject)
qed
lemma bit_not_0_iff [iff]: "(x::bit) \<noteq> 0 \<longleftrightarrow> x = 1"
  by (induct x) simp_all
lemma bit_not_1_iff [iff]: "(x::bit) \<noteq> 1 \<longleftrightarrow> x = 0"
  by (induct x) simp_all
subsection {* Type @{typ bit} forms a field *}
instantiation bit :: field_inverse_zero
begin
definition plus_bit_def:
  "x + y = bit_case y (bit_case 1 0 y) x"
definition times_bit_def:
  "x * y = bit_case 0 y x"
definition uminus_bit_def [simp]:
  "- x = (x :: bit)"
definition minus_bit_def [simp]:
  "x - y = (x + y :: bit)"
definition inverse_bit_def [simp]:
  "inverse x = (x :: bit)"
definition divide_bit_def [simp]:
  "x / y = (x * y :: bit)"
lemmas field_bit_defs =
  plus_bit_def times_bit_def minus_bit_def uminus_bit_def
  divide_bit_def inverse_bit_def
instance proof
qed (unfold field_bit_defs, auto split: bit.split)
end
lemma bit_add_self: "x + x = (0 :: bit)"
  unfolding plus_bit_def by (simp split: bit.split)
lemma bit_mult_eq_1_iff [simp]: "x * y = (1 :: bit) \<longleftrightarrow> x = 1 \<and> y = 1"
  unfolding times_bit_def by (simp split: bit.split)
text {* Not sure whether the next two should be simp rules. *}
lemma bit_add_eq_0_iff: "x + y = (0 :: bit) \<longleftrightarrow> x = y"
  unfolding plus_bit_def by (simp split: bit.split)
lemma bit_add_eq_1_iff: "x + y = (1 :: bit) \<longleftrightarrow> x \<noteq> y"
  unfolding plus_bit_def by (simp split: bit.split)
subsection {* Numerals at type @{typ bit} *}
instantiation bit :: number_ring
begin
definition number_of_bit_def:
  "(number_of w :: bit) = of_int w"
instance proof
qed (rule number_of_bit_def)
end
text {* All numerals reduce to either 0 or 1. *}
lemma bit_minus1 [simp]: "-1 = (1 :: bit)"
  by (simp only: number_of_Min uminus_bit_def)
lemma bit_number_of_even [simp]: "number_of (Int.Bit0 w) = (0 :: bit)"
  by (simp only: number_of_Bit0 add_0_left bit_add_self)
lemma bit_number_of_odd [simp]: "number_of (Int.Bit1 w) = (1 :: bit)"
  by (simp only: number_of_Bit1 add_assoc bit_add_self
                 monoid_add_class.add_0_right)
end