(* Title: HOL/Tools/Predicate_Compile/predicate_compile_compilations.ML
Author: Lukas Bulwahn, TU Muenchen
Structures for different compilations of the predicate compiler.
*)
structure Predicate_Comp_Funs = (* FIXME proper signature *)
struct
fun mk_monadT T = Type (\<^type_name>\<open>Predicate.pred\<close>, [T])
fun dest_monadT (Type (\<^type_name>\<open>Predicate.pred\<close>, [T])) = T
| dest_monadT T = raise TYPE ("dest_monadT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Orderings.bot\<close>, mk_monadT T)
fun mk_single t =
let val T = fastype_of t
in Const(\<^const_name>\<open>Predicate.single\<close>, T --> mk_monadT T) $ t end
fun mk_bind (x, f) =
let val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Predicate.bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>sup\<close>
fun mk_if cond = Const (\<^const_name>\<open>Predicate.if_pred\<close>,
HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond
fun mk_iterate_upto T (f, from, to) =
list_comb (Const (\<^const_name>\<open>Predicate.iterate_upto\<close>,
[\<^typ>\<open>natural\<close> --> T, \<^typ>\<open>natural\<close>, \<^typ>\<open>natural\<close>] ---> mk_monadT T),
[f, from, to])
fun mk_not t =
let
val T = mk_monadT HOLogic.unitT
in Const (\<^const_name>\<open>Predicate.not_pred\<close>, T --> T) $ t end
fun mk_Enum f =
let val T as Type ("fun", [T', _]) = fastype_of f
in
Const (\<^const_name>\<open>Predicate.Pred\<close>, T --> mk_monadT T') $ f
end;
fun mk_Eval (f, x) =
let
val T = dest_monadT (fastype_of f)
in
Const (\<^const_name>\<open>Predicate.eval\<close>, mk_monadT T --> T --> HOLogic.boolT) $ f $ x
end
fun dest_Eval (Const (\<^const_name>\<open>Predicate.eval\<close>, _) $ f $ x) = (f, x)
fun mk_map T1 T2 tf tp = Const (\<^const_name>\<open>Predicate.map\<close>,
(T1 --> T2) --> mk_monadT T1 --> mk_monadT T2) $ tf $ tp
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end
structure CPS_Comp_Funs = (* FIXME proper signature *)
struct
fun mk_monadT T =
(T --> \<^typ>\<open>Code_Evaluation.term list option\<close>) --> \<^typ>\<open>Code_Evaluation.term list option\<close>
fun dest_monadT
(Type ("fun", [Type ("fun", [T, \<^typ>\<open>term list option\<close>]), \<^typ>\<open>term list option\<close>])) = T
| dest_monadT T = raise TYPE ("dest_monadT", [T], []);
fun mk_empty T = Const (\<^const_name>\<open>Quickcheck_Exhaustive.cps_empty\<close>, mk_monadT T)
fun mk_single t =
let val T = fastype_of t
in Const(\<^const_name>\<open>Quickcheck_Exhaustive.cps_single\<close>, T --> mk_monadT T) $ t end
fun mk_bind (x, f) =
let val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Quickcheck_Exhaustive.cps_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Quickcheck_Exhaustive.cps_plus\<close>
fun mk_if cond = Const (\<^const_name>\<open>Quickcheck_Exhaustive.cps_if\<close>,
HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond
fun mk_iterate_upto _ _ = error "not implemented yet"
fun mk_not t =
let
val T = mk_monadT HOLogic.unitT
in Const (\<^const_name>\<open>Quickcheck_Exhaustive.cps_not\<close>, T --> T) $ t end
fun mk_Enum _ = error "not implemented"
fun mk_Eval _ = error "not implemented"
fun dest_Eval _ = error "not implemented"
fun mk_map _ _ _ _ = error "not implemented"
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};
end
structure Pos_Bounded_CPS_Comp_Funs = (* FIXME proper signature *)
struct
val resultT = \<^typ>\<open>(bool * Code_Evaluation.term list) option\<close>
fun mk_monadT T = (T --> resultT) --> \<^typ>\<open>natural\<close> --> resultT
fun dest_monadT (Type ("fun", [Type ("fun", [T, \<^typ>\<open>(bool * term list) option\<close>]),
\<^typ>\<open>natural => (bool * term list) option\<close>])) = T
| dest_monadT T = raise TYPE ("dest_monadT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Quickcheck_Exhaustive.pos_bound_cps_empty\<close>, mk_monadT T)
fun mk_single t =
let val T = fastype_of t
in Const(\<^const_name>\<open>Quickcheck_Exhaustive.pos_bound_cps_single\<close>, T --> mk_monadT T) $ t end
fun mk_bind (x, f) =
let val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Quickcheck_Exhaustive.pos_bound_cps_bind\<close>, fastype_of x --> T --> U) $ x $ f
end;
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Quickcheck_Exhaustive.pos_bound_cps_plus\<close>
fun mk_if cond =
Const (\<^const_name>\<open>Quickcheck_Exhaustive.pos_bound_cps_if\<close>,
HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond
fun mk_iterate_upto _ _ = error "not implemented yet"
fun mk_not t =
let
val nT = \<^typ>\<open>(unit Quickcheck_Exhaustive.unknown =>
Code_Evaluation.term list Quickcheck_Exhaustive.three_valued) => natural =>
Code_Evaluation.term list Quickcheck_Exhaustive.three_valued\<close>
val T = mk_monadT HOLogic.unitT
in Const (\<^const_name>\<open>Quickcheck_Exhaustive.pos_bound_cps_not\<close>, nT --> T) $ t end
fun mk_Enum _ = error "not implemented"
fun mk_Eval _ = error "not implemented"
fun dest_Eval _ = error "not implemented"
fun mk_map _ _ _ _ = error "not implemented"
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};
end
structure Neg_Bounded_CPS_Comp_Funs = (* FIXME proper signature *)
struct
fun mk_monadT T =
(Type (\<^type_name>\<open>Quickcheck_Exhaustive.unknown\<close>, [T])
--> \<^typ>\<open>Code_Evaluation.term list Quickcheck_Exhaustive.three_valued\<close>)
--> \<^typ>\<open>natural => Code_Evaluation.term list Quickcheck_Exhaustive.three_valued\<close>
fun dest_monadT
(Type ("fun", [Type ("fun", [Type (\<^type_name>\<open>Quickcheck_Exhaustive.unknown\<close>, [T]),
\<^typ>\<open>term list Quickcheck_Exhaustive.three_valued\<close>]),
\<^typ>\<open>natural => term list Quickcheck_Exhaustive.three_valued\<close>])) = T
| dest_monadT T = raise TYPE ("dest_monadT", [T], []);
fun mk_empty T = Const (\<^const_name>\<open>Quickcheck_Exhaustive.neg_bound_cps_empty\<close>, mk_monadT T)
fun mk_single t =
let val T = fastype_of t
in Const(\<^const_name>\<open>Quickcheck_Exhaustive.neg_bound_cps_single\<close>, T --> mk_monadT T) $ t end
fun mk_bind (x, f) =
let val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Quickcheck_Exhaustive.neg_bound_cps_bind\<close>, fastype_of x --> T --> U) $ x $ f
end;
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Quickcheck_Exhaustive.neg_bound_cps_plus\<close>
fun mk_if cond = Const (\<^const_name>\<open>Quickcheck_Exhaustive.neg_bound_cps_if\<close>,
HOLogic.boolT --> mk_monadT HOLogic.unitT) $ cond
fun mk_iterate_upto _ _ = error "not implemented"
fun mk_not t =
let
val T = mk_monadT HOLogic.unitT
val pT = \<^typ>\<open>(unit => (bool * Code_Evaluation.term list) option)\<close>
--> \<^typ>\<open>natural => (bool * Code_Evaluation.term list) option\<close>
in Const (\<^const_name>\<open>Quickcheck_Exhaustive.neg_bound_cps_not\<close>, pT --> T) $ t end
fun mk_Enum _ = error "not implemented"
fun mk_Eval _ = error "not implemented"
fun dest_Eval _ = error "not implemented"
fun mk_map _ _ _ _ = error "not implemented"
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_monadT, dest_monadT = dest_monadT, mk_empty = mk_empty,
mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};
end;
structure RandomPredCompFuns = (* FIXME proper signature *)
struct
fun mk_randompredT T =
\<^typ>\<open>Random.seed\<close> --> HOLogic.mk_prodT (Predicate_Comp_Funs.mk_monadT T, \<^typ>\<open>Random.seed\<close>)
fun dest_randompredT (Type ("fun", [\<^typ>\<open>Random.seed\<close>, Type (\<^type_name>\<open>Product_Type.prod\<close>,
[Type (\<^type_name>\<open>Predicate.pred\<close>, [T]), \<^typ>\<open>Random.seed\<close>])])) = T
| dest_randompredT T = raise TYPE ("dest_randompredT", [T], [])
fun mk_empty T = Const(\<^const_name>\<open>Random_Pred.empty\<close>, mk_randompredT T)
fun mk_single t =
let
val T = fastype_of t
in
Const (\<^const_name>\<open>Random_Pred.single\<close>, T --> mk_randompredT T) $ t
end
fun mk_bind (x, f) =
let
val T as (Type ("fun", [_, U])) = fastype_of f
in
Const (\<^const_name>\<open>Random_Pred.bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Random_Pred.union\<close>
fun mk_if cond = Const (\<^const_name>\<open>Random_Pred.if_randompred\<close>,
HOLogic.boolT --> mk_randompredT HOLogic.unitT) $ cond;
fun mk_iterate_upto T (f, from, to) =
list_comb (Const (\<^const_name>\<open>Random_Pred.iterate_upto\<close>,
[\<^typ>\<open>natural\<close> --> T, \<^typ>\<open>natural\<close>, \<^typ>\<open>natural\<close>] ---> mk_randompredT T),
[f, from, to])
fun mk_not t =
let
val T = mk_randompredT HOLogic.unitT
in Const (\<^const_name>\<open>Random_Pred.not_randompred\<close>, T --> T) $ t end
fun mk_map T1 T2 tf tp = Const (\<^const_name>\<open>Random_Pred.map\<close>,
(T1 --> T2) --> mk_randompredT T1 --> mk_randompredT T2) $ tf $ tp
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_randompredT, dest_monadT = dest_randompredT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map};
end
structure DSequence_CompFuns = (* FIXME proper signature *)
struct
fun mk_dseqT T = Type ("fun", [\<^typ>\<open>natural\<close>, Type ("fun", [\<^typ>\<open>bool\<close>,
Type (\<^type_name>\<open>Option.option\<close>, [Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [T])])])])
fun dest_dseqT (Type ("fun", [\<^typ>\<open>natural\<close>, Type ("fun", [\<^typ>\<open>bool\<close>,
Type (\<^type_name>\<open>Option.option\<close>, [Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [T])])])])) = T
| dest_dseqT T = raise TYPE ("dest_dseqT", [T], []);
fun mk_empty T = Const (\<^const_name>\<open>Limited_Sequence.empty\<close>, mk_dseqT T);
fun mk_single t =
let val T = fastype_of t
in Const(\<^const_name>\<open>Limited_Sequence.single\<close>, T --> mk_dseqT T) $ t end;
fun mk_bind (x, f) =
let val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Limited_Sequence.bind\<close>, fastype_of x --> T --> U) $ x $ f
end;
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Limited_Sequence.union\<close>;
fun mk_if cond = Const (\<^const_name>\<open>Limited_Sequence.if_seq\<close>,
HOLogic.boolT --> mk_dseqT HOLogic.unitT) $ cond;
fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"
fun mk_not t = let val T = mk_dseqT HOLogic.unitT
in Const (\<^const_name>\<open>Limited_Sequence.not_seq\<close>, T --> T) $ t end
fun mk_map T1 T2 tf tp = Const (\<^const_name>\<open>Limited_Sequence.map\<close>,
(T1 --> T2) --> mk_dseqT T1 --> mk_dseqT T2) $ tf $ tp
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_dseqT, dest_monadT = dest_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end;
structure New_Pos_DSequence_CompFuns = (* FIXME proper signature *)
struct
fun mk_pos_dseqT T =
\<^typ>\<open>natural\<close> --> Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [T])
fun dest_pos_dseqT
(Type ("fun", [\<^typ>\<open>natural\<close>, Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [T])])) = T
| dest_pos_dseqT T = raise TYPE ("dest_pos_dseqT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Limited_Sequence.pos_empty\<close>, mk_pos_dseqT T)
fun mk_single t =
let
val T = fastype_of t
in Const(\<^const_name>\<open>Limited_Sequence.pos_single\<close>, T --> mk_pos_dseqT T) $ t end
fun mk_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Limited_Sequence.pos_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
fun mk_decr_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Limited_Sequence.pos_decr_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Limited_Sequence.pos_union\<close>
fun mk_if cond =
Const (\<^const_name>\<open>Limited_Sequence.pos_if_seq\<close>,
HOLogic.boolT --> mk_pos_dseqT HOLogic.unitT) $ cond
fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"
fun mk_not t =
let
val pT = mk_pos_dseqT HOLogic.unitT
val nT =
\<^typ>\<open>natural\<close> --> Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>,
[Type (\<^type_name>\<open>Option.option\<close>, [\<^typ>\<open>unit\<close>])])
in Const (\<^const_name>\<open>Limited_Sequence.pos_not_seq\<close>, nT --> pT) $ t end
fun mk_map T1 T2 tf tp =
Const (\<^const_name>\<open>Limited_Sequence.pos_map\<close>,
(T1 --> T2) --> mk_pos_dseqT T1 --> mk_pos_dseqT T2) $ tf $ tp
val depth_limited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_pos_dseqT, dest_monadT = dest_pos_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
val depth_unlimited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_pos_dseqT, dest_monadT = dest_pos_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end
structure New_Neg_DSequence_CompFuns = (* FIXME proper signature *)
struct
fun mk_neg_dseqT T = \<^typ>\<open>natural\<close> -->
Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [Type (\<^type_name>\<open>Option.option\<close>, [T])])
fun dest_neg_dseqT
(Type ("fun", [\<^typ>\<open>natural\<close>,
Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [Type (\<^type_name>\<open>Option.option\<close>, [T])])])) =
T
| dest_neg_dseqT T = raise TYPE ("dest_neg_dseqT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Limited_Sequence.neg_empty\<close>, mk_neg_dseqT T)
fun mk_single t =
let
val T = fastype_of t
in Const(\<^const_name>\<open>Limited_Sequence.neg_single\<close>, T --> mk_neg_dseqT T) $ t end
fun mk_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Limited_Sequence.neg_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
fun mk_decr_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Limited_Sequence.neg_decr_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Limited_Sequence.neg_union\<close>
fun mk_if cond =
Const (\<^const_name>\<open>Limited_Sequence.neg_if_seq\<close>,
HOLogic.boolT --> mk_neg_dseqT HOLogic.unitT) $ cond
fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"
fun mk_not t =
let
val nT = mk_neg_dseqT HOLogic.unitT
val pT =
\<^typ>\<open>natural\<close> --> Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>,
[\<^typ>\<open>unit\<close>])
in Const (\<^const_name>\<open>Limited_Sequence.neg_not_seq\<close>, pT --> nT) $ t end
fun mk_map T1 T2 tf tp =
Const (\<^const_name>\<open>Limited_Sequence.neg_map\<close>,
(T1 --> T2) --> mk_neg_dseqT T1 --> mk_neg_dseqT T2) $ tf $ tp
val depth_limited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_neg_dseqT, dest_monadT = dest_neg_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
val depth_unlimited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_neg_dseqT, dest_monadT = dest_neg_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end
structure New_Pos_Random_Sequence_CompFuns = (* FIXME proper signature *)
struct
fun mk_pos_random_dseqT T =
\<^typ>\<open>natural\<close> --> \<^typ>\<open>natural\<close> --> \<^typ>\<open>Random.seed\<close> -->
\<^typ>\<open>natural\<close> --> Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [T])
fun dest_pos_random_dseqT
(Type ("fun", [\<^typ>\<open>natural\<close>, Type ("fun", [\<^typ>\<open>natural\<close>,
Type ("fun", [\<^typ>\<open>Random.seed\<close>, Type ("fun", [\<^typ>\<open>natural\<close>,
Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [T])])])])])) = T
| dest_pos_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Random_Sequence.pos_empty\<close>, mk_pos_random_dseqT T)
fun mk_single t =
let
val T = fastype_of t
in Const(\<^const_name>\<open>Random_Sequence.pos_single\<close>, T --> mk_pos_random_dseqT T) $ t end
fun mk_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Random_Sequence.pos_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
fun mk_decr_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Random_Sequence.pos_decr_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Random_Sequence.pos_union\<close>;
fun mk_if cond = Const (\<^const_name>\<open>Random_Sequence.pos_if_random_dseq\<close>,
HOLogic.boolT --> mk_pos_random_dseqT HOLogic.unitT) $ cond;
fun mk_iterate_upto T (f, from, to) =
list_comb (Const (\<^const_name>\<open>Random_Sequence.pos_iterate_upto\<close>,
[\<^typ>\<open>natural\<close> --> T, \<^typ>\<open>natural\<close>, \<^typ>\<open>natural\<close>]
---> mk_pos_random_dseqT T),
[f, from, to])
fun mk_not t =
let
val pT = mk_pos_random_dseqT HOLogic.unitT
val nT = \<^typ>\<open>natural\<close> --> \<^typ>\<open>natural\<close> --> \<^typ>\<open>Random.seed\<close> -->
\<^typ>\<open>natural\<close> --> Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>,
[Type (\<^type_name>\<open>Option.option\<close>, [\<^typ>\<open>unit\<close>])])
in Const (\<^const_name>\<open>Random_Sequence.pos_not_random_dseq\<close>, nT --> pT) $ t end
fun mk_map T1 T2 tf tp =
Const (\<^const_name>\<open>Random_Sequence.pos_map\<close>,
(T1 --> T2) --> mk_pos_random_dseqT T1 --> mk_pos_random_dseqT T2) $ tf $ tp
val depth_limited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_pos_random_dseqT, dest_monadT = dest_pos_random_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
val depth_unlimited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_pos_random_dseqT, dest_monadT = dest_pos_random_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end;
structure New_Neg_Random_Sequence_CompFuns = (* FIXME proper signature *)
struct
fun mk_neg_random_dseqT T =
\<^typ>\<open>natural\<close> --> \<^typ>\<open>natural\<close> --> \<^typ>\<open>Random.seed\<close> -->
\<^typ>\<open>natural\<close> -->
Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [Type (\<^type_name>\<open>Option.option\<close>, [T])])
fun dest_neg_random_dseqT
(Type ("fun", [\<^typ>\<open>natural\<close>, Type ("fun", [\<^typ>\<open>natural\<close>,
Type ("fun", [\<^typ>\<open>Random.seed\<close>, Type ("fun", [\<^typ>\<open>natural\<close>,
Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>,
[Type (\<^type_name>\<open>Option.option\<close>, [T])])])])])])) = T
| dest_neg_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Random_Sequence.neg_empty\<close>, mk_neg_random_dseqT T)
fun mk_single t =
let
val T = fastype_of t
in Const(\<^const_name>\<open>Random_Sequence.neg_single\<close>, T --> mk_neg_random_dseqT T) $ t end
fun mk_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Random_Sequence.neg_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
fun mk_decr_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Random_Sequence.neg_decr_bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Random_Sequence.neg_union\<close>
fun mk_if cond =
Const (\<^const_name>\<open>Random_Sequence.neg_if_random_dseq\<close>,
HOLogic.boolT --> mk_neg_random_dseqT HOLogic.unitT) $ cond
fun mk_iterate_upto T (f, from, to) =
list_comb (Const (\<^const_name>\<open>Random_Sequence.neg_iterate_upto\<close>,
[\<^typ>\<open>natural\<close> --> T, \<^typ>\<open>natural\<close>, \<^typ>\<open>natural\<close>]
---> mk_neg_random_dseqT T),
[f, from, to])
fun mk_not t =
let
val nT = mk_neg_random_dseqT HOLogic.unitT
val pT = \<^typ>\<open>natural\<close> --> \<^typ>\<open>natural\<close> --> \<^typ>\<open>Random.seed\<close> -->
\<^typ>\<open>natural\<close> --> Type (\<^type_name>\<open>Lazy_Sequence.lazy_sequence\<close>, [\<^typ>\<open>unit\<close>])
in Const (\<^const_name>\<open>Random_Sequence.neg_not_random_dseq\<close>, pT --> nT) $ t end
fun mk_map T1 T2 tf tp =
Const (\<^const_name>\<open>Random_Sequence.neg_map\<close>,
(T1 --> T2) --> mk_neg_random_dseqT T1 --> mk_neg_random_dseqT T2) $ tf $ tp
val depth_limited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_neg_random_dseqT, dest_monadT = dest_neg_random_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_decr_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
val depth_unlimited_compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_neg_random_dseqT, dest_monadT = dest_neg_random_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end
structure Random_Sequence_CompFuns = (* FIXME proper signature *)
struct
fun mk_random_dseqT T =
\<^typ>\<open>natural\<close> --> \<^typ>\<open>natural\<close> --> \<^typ>\<open>Random.seed\<close> -->
HOLogic.mk_prodT (DSequence_CompFuns.mk_dseqT T, \<^typ>\<open>Random.seed\<close>)
fun dest_random_dseqT
(Type ("fun", [\<^typ>\<open>natural\<close>, Type ("fun", [\<^typ>\<open>natural\<close>,
Type ("fun", [\<^typ>\<open>Random.seed\<close>,
Type (\<^type_name>\<open>Product_Type.prod\<close>, [T, \<^typ>\<open>Random.seed\<close>])])])])) =
DSequence_CompFuns.dest_dseqT T
| dest_random_dseqT T = raise TYPE ("dest_random_dseqT", [T], [])
fun mk_empty T = Const (\<^const_name>\<open>Random_Sequence.empty\<close>, mk_random_dseqT T)
fun mk_single t =
let
val T = fastype_of t
in Const(\<^const_name>\<open>Random_Sequence.single\<close>, T --> mk_random_dseqT T) $ t end
fun mk_bind (x, f) =
let
val T as Type ("fun", [_, U]) = fastype_of f
in
Const (\<^const_name>\<open>Random_Sequence.bind\<close>, fastype_of x --> T --> U) $ x $ f
end
val mk_plus = HOLogic.mk_binop \<^const_name>\<open>Random_Sequence.union\<close>
fun mk_if cond =
Const (\<^const_name>\<open>Random_Sequence.if_random_dseq\<close>,
HOLogic.boolT --> mk_random_dseqT HOLogic.unitT) $ cond
fun mk_iterate_upto _ _ = raise Fail "No iterate_upto compilation"
fun mk_not t =
let
val T = mk_random_dseqT HOLogic.unitT
in Const (\<^const_name>\<open>Random_Sequence.not_random_dseq\<close>, T --> T) $ t end
fun mk_map T1 T2 tf tp = Const (\<^const_name>\<open>Random_Sequence.map\<close>,
(T1 --> T2) --> mk_random_dseqT T1 --> mk_random_dseqT T2) $ tf $ tp
val compfuns =
Predicate_Compile_Aux.CompilationFuns
{mk_monadT = mk_random_dseqT, dest_monadT = dest_random_dseqT,
mk_empty = mk_empty, mk_single = mk_single, mk_bind = mk_bind, mk_plus = mk_plus, mk_if = mk_if,
mk_iterate_upto = mk_iterate_upto, mk_not = mk_not, mk_map = mk_map}
end