| author | haftmann |
| Sun, 03 Apr 2011 11:40:32 +0200 | |
| changeset 42207 | 2bda5eddadf3 |
| parent 41959 | b460124855b8 |
| child 47222 | 1b7c909a6fad |
| permissions | -rw-r--r-- |
(* Title: HOL/ex/Arithmetic_Series_Complex.thy Author: Benjamin Porter, 2006 *) header {* Arithmetic Series for Reals *} theory Arithmetic_Series_Complex imports Complex_Main begin lemma arith_series_real: "(2::real) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) = of_nat n * (a + (a + of_nat(n - 1)*d))" proof - have "((1::real) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat(i)*d) = of_nat(n) * (a + (a + of_nat(n - 1)*d))" by (rule arith_series_general) thus ?thesis by simp qed end