src/HOLCF/Sprod3.ML
author wenzelm
Mon, 16 Nov 1998 10:42:40 +0100
changeset 5871 2c037ffa7287
parent 5033 06f03dc5a1dc
child 9245 428385c4bc50
permissions -rw-r--r--
Attribute.thms_of;

(*  Title:      HOLCF/Sprod3.thy
    ID:         $Id$
    Author:     Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen

Lemmas for Sprod.thy 
*)

open Sprod3;

(* for compatibility with old HOLCF-Version *)
qed_goal "inst_sprod_pcpo" thy "UU = Ispair UU UU"
 (fn prems => 
        [
        (simp_tac (HOL_ss addsimps [UU_def,UU_sprod_def]) 1)
        ]);
(* ------------------------------------------------------------------------ *)
(* continuity of Ispair, Isfst, Issnd                                       *)
(* ------------------------------------------------------------------------ *)

qed_goal "sprod3_lemma1" thy 
"[| chain(Y);  x~= UU;  lub(range(Y))~= UU |] ==>\
\ Ispair (lub(range Y)) x =\
\ Ispair (lub(range(%i. Isfst(Ispair(Y i) x)))) \
\        (lub(range(%i. Issnd(Ispair(Y i) x))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("f1","Ispair")] (arg_cong RS cong) 1),
        (rtac lub_equal 1),
        (atac 1),
        (rtac (monofun_Isfst RS ch2ch_monofun) 1),
        (rtac ch2ch_fun 1),
        (rtac (monofun_Ispair1 RS ch2ch_monofun) 1),
        (atac 1),
        (rtac allI 1),
        (asm_simp_tac Sprod0_ss 1),
        (rtac sym 1),
        (rtac lub_chain_maxelem 1),
        (res_inst_tac [("P","%j.~Y(j)=UU")] exE 1),
        (rtac (not_all RS iffD1) 1),
        (res_inst_tac [("Q","lub(range(Y)) = UU")] contrapos 1),
        (atac 1),
        (rtac chain_UU_I_inverse 1),
        (atac 1),
        (rtac exI 1),
        (etac Issnd2 1),
        (rtac allI 1),
        (res_inst_tac [("Q","Y(i)=UU")] (excluded_middle RS disjE) 1),
        (asm_simp_tac Sprod0_ss 1),
        (rtac refl_less 1),
        (res_inst_tac [("s","UU"),("t","Y(i)")] subst 1),
        (etac sym 1),
        (asm_simp_tac Sprod0_ss  1),
        (rtac minimal 1)
        ]);

qed_goal "sprod3_lemma2" thy 
"[| chain(Y); x ~= UU; lub(range(Y)) = UU |] ==>\
\   Ispair (lub(range Y)) x =\
\   Ispair (lub(range(%i. Isfst(Ispair(Y i) x))))\
\          (lub(range(%i. Issnd(Ispair(Y i) x))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("s","UU"),("t","lub(range(Y))")] ssubst 1),
        (atac 1),
        (rtac trans 1),
        (rtac strict_Ispair1 1),
        (rtac (strict_Ispair RS sym) 1),
        (rtac disjI1 1),
        (rtac chain_UU_I_inverse 1),
        (rtac allI 1),
        (asm_simp_tac Sprod0_ss  1),
        (etac (chain_UU_I RS spec) 1),
        (atac 1)
        ]);


qed_goal "sprod3_lemma3" thy 
"[| chain(Y); x = UU |] ==>\
\          Ispair (lub(range Y)) x =\
\          Ispair (lub(range(%i. Isfst(Ispair (Y i) x))))\
\                 (lub(range(%i. Issnd(Ispair (Y i) x))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("s","UU"),("t","x")] ssubst 1),
        (atac 1),
        (rtac trans 1),
        (rtac strict_Ispair2 1),
        (rtac (strict_Ispair RS sym) 1),
        (rtac disjI1 1),
        (rtac chain_UU_I_inverse 1),
        (rtac allI 1),
        (simp_tac Sprod0_ss  1)
        ]);


qed_goal "contlub_Ispair1" thy "contlub(Ispair)"
(fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (rtac (expand_fun_eq RS iffD2) 1),
        (strip_tac 1),
        (stac (lub_fun RS thelubI) 1),
        (etac (monofun_Ispair1 RS ch2ch_monofun) 1),
        (rtac trans 1),
        (rtac (thelub_sprod RS sym) 2),
        (rtac ch2ch_fun 2),
        (etac (monofun_Ispair1 RS ch2ch_monofun) 2),
        (res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
        (res_inst_tac 
                [("Q","lub(range(Y))=UU")] (excluded_middle RS disjE) 1),
        (etac sprod3_lemma1 1),
        (atac 1),
        (atac 1),
        (etac sprod3_lemma2 1),
        (atac 1),
        (atac 1),
        (etac sprod3_lemma3 1),
        (atac 1)
        ]);

qed_goal "sprod3_lemma4" thy 
"[| chain(Y); x ~= UU; lub(range(Y)) ~= UU |] ==>\
\         Ispair x (lub(range Y)) =\
\         Ispair (lub(range(%i. Isfst (Ispair x (Y i)))))\
\                (lub(range(%i. Issnd (Ispair x (Y i)))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("f1","Ispair")] (arg_cong RS cong) 1),
        (rtac sym 1),
        (rtac lub_chain_maxelem 1),
        (res_inst_tac [("P","%j. Y(j)~=UU")] exE 1),
        (rtac (not_all RS iffD1) 1),
        (res_inst_tac [("Q","lub(range(Y)) = UU")] contrapos 1),
        (atac 1),
        (rtac chain_UU_I_inverse 1),
        (atac 1),
        (rtac exI 1),
        (etac Isfst2 1),
        (rtac allI 1),
        (res_inst_tac [("Q","Y(i)=UU")] (excluded_middle RS disjE) 1),
        (asm_simp_tac Sprod0_ss 1),
        (rtac refl_less 1),
        (res_inst_tac [("s","UU"),("t","Y(i)")] subst 1),
        (etac sym 1),
        (asm_simp_tac Sprod0_ss  1),
        (rtac minimal 1),
        (rtac lub_equal 1),
        (atac 1),
        (rtac (monofun_Issnd RS ch2ch_monofun) 1),
        (rtac (monofun_Ispair2 RS ch2ch_monofun) 1),
        (atac 1),
        (rtac allI 1),
        (asm_simp_tac Sprod0_ss 1)
        ]);

qed_goal "sprod3_lemma5" thy 
"[| chain(Y); x ~= UU; lub(range(Y)) = UU |] ==>\
\         Ispair x (lub(range Y)) =\
\         Ispair (lub(range(%i. Isfst(Ispair x (Y i)))))\
\                (lub(range(%i. Issnd(Ispair x (Y i)))))"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("s","UU"),("t","lub(range(Y))")] ssubst 1),
        (atac 1),
        (rtac trans 1),
        (rtac strict_Ispair2 1),
        (rtac (strict_Ispair RS sym) 1),
        (rtac disjI2 1),
        (rtac chain_UU_I_inverse 1),
        (rtac allI 1),
        (asm_simp_tac Sprod0_ss  1),
        (etac (chain_UU_I RS spec) 1),
        (atac 1)
        ]);

qed_goal "sprod3_lemma6" thy 
"[| chain(Y); x = UU |] ==>\
\         Ispair x (lub(range Y)) =\
\         Ispair (lub(range(%i. Isfst (Ispair x (Y i)))))\
\                (lub(range(%i. Issnd (Ispair x (Y i)))))"
(fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("s","UU"),("t","x")] ssubst 1),
        (atac 1),
        (rtac trans 1),
        (rtac strict_Ispair1 1),
        (rtac (strict_Ispair RS sym) 1),
        (rtac disjI1 1),
        (rtac chain_UU_I_inverse 1),
        (rtac allI 1),
        (simp_tac Sprod0_ss  1)
        ]);

qed_goal "contlub_Ispair2" thy "contlub(Ispair(x))"
(fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (rtac trans 1),
        (rtac (thelub_sprod RS sym) 2),
        (etac (monofun_Ispair2 RS ch2ch_monofun) 2),
        (res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
        (res_inst_tac [("Q","lub(range(Y))=UU")] 
                (excluded_middle RS disjE) 1),
        (etac sprod3_lemma4 1),
        (atac 1),
        (atac 1),
        (etac sprod3_lemma5 1),
        (atac 1),
        (atac 1),
        (etac sprod3_lemma6 1),
        (atac 1)
        ]);


qed_goal "cont_Ispair1" thy "cont(Ispair)"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_Ispair1 1),
        (rtac contlub_Ispair1 1)
        ]);


qed_goal "cont_Ispair2" thy "cont(Ispair(x))"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_Ispair2 1),
        (rtac contlub_Ispair2 1)
        ]);

qed_goal "contlub_Isfst" thy "contlub(Isfst)"
 (fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (stac (lub_sprod RS thelubI) 1),
        (atac 1),
        (res_inst_tac [("Q","lub(range(%i. Issnd(Y(i))))=UU")]  
                (excluded_middle RS disjE) 1),
        (asm_simp_tac Sprod0_ss  1),
        (res_inst_tac [("s","UU"),("t","lub(range(%i. Issnd(Y(i))))")]
                ssubst 1),
        (atac 1),
        (rtac trans 1),
        (asm_simp_tac Sprod0_ss  1),
        (rtac sym 1),
        (rtac chain_UU_I_inverse 1),
        (rtac allI 1),
        (rtac strict_Isfst 1),
        (rtac swap 1),
        (etac (defined_IsfstIssnd RS conjunct2) 2),
        (fast_tac (HOL_cs addSDs [monofun_Issnd RS ch2ch_monofun RS 
                                  chain_UU_I RS spec]) 1)
        ]);

qed_goal "contlub_Issnd" thy "contlub(Issnd)"
(fn prems =>
        [
        (rtac contlubI 1),
        (strip_tac 1),
        (stac (lub_sprod RS thelubI) 1),
        (atac 1),
        (res_inst_tac [("Q","lub(range(%i. Isfst(Y(i))))=UU")]
         (excluded_middle RS disjE) 1),
        (asm_simp_tac Sprod0_ss  1),
        (res_inst_tac [("s","UU"),("t","lub(range(%i. Isfst(Y(i))))")] 
                ssubst 1),
        (atac 1),
        (asm_simp_tac Sprod0_ss  1),
        (rtac sym 1),
        (rtac chain_UU_I_inverse 1),
        (rtac allI 1),
        (rtac strict_Issnd 1),
        (rtac swap 1),
        (etac (defined_IsfstIssnd RS conjunct1) 2),
        (fast_tac (HOL_cs addSDs [monofun_Isfst RS ch2ch_monofun RS
                                  chain_UU_I RS spec]) 1)
        ]);

qed_goal "cont_Isfst" thy "cont(Isfst)"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_Isfst 1),
        (rtac contlub_Isfst 1)
        ]);

qed_goal "cont_Issnd" thy "cont(Issnd)"
(fn prems =>
        [
        (rtac monocontlub2cont 1),
        (rtac monofun_Issnd 1),
        (rtac contlub_Issnd 1)
        ]);

qed_goal "spair_eq" thy "[|x1=x2;y1=y2|] ==> (:x1,y1:) = (:x2,y2:)"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (fast_tac HOL_cs 1)
        ]);

(* ------------------------------------------------------------------------ *)
(* convert all lemmas to the continuous versions                            *)
(* ------------------------------------------------------------------------ *)

qed_goalw "beta_cfun_sprod" thy [spair_def]
        "(LAM x y. Ispair x y)`a`b = Ispair a b"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (simp_tac (simpset() addsimps [cont_Ispair2, cont_Ispair1,
					cont2cont_CF1L]) 1),
        (stac beta_cfun 1),
        (rtac cont_Ispair2 1),
        (rtac refl 1)
        ]);

qed_goalw "inject_spair" thy [spair_def]
        "[| aa~=UU ; ba~=UU ; (:a,b:)=(:aa,ba:) |] ==> a=aa & b=ba"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (etac inject_Ispair 1),
        (atac 1),
        (etac box_equals 1),
        (rtac beta_cfun_sprod 1),
        (rtac beta_cfun_sprod 1)
        ]);

qed_goalw "inst_sprod_pcpo2" thy [spair_def] "UU = (:UU,UU:)"
 (fn prems =>
        [
        (rtac sym 1),
        (rtac trans 1),
        (rtac beta_cfun_sprod 1),
        (rtac sym 1),
        (rtac inst_sprod_pcpo 1)
        ]);

qed_goalw "strict_spair" thy [spair_def] 
        "(a=UU | b=UU) ==> (:a,b:)=UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (rtac trans 1),
        (rtac beta_cfun_sprod 1),
        (rtac trans 1),
        (rtac (inst_sprod_pcpo RS sym) 2),
        (etac strict_Ispair 1)
        ]);

qed_goalw "strict_spair1" thy [spair_def] "(:UU,b:) = UU"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (rtac trans 1),
        (rtac (inst_sprod_pcpo RS sym) 2),
        (rtac strict_Ispair1 1)
        ]);

qed_goalw "strict_spair2" thy [spair_def] "(:a,UU:) = UU"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (rtac trans 1),
        (rtac (inst_sprod_pcpo RS sym) 2),
        (rtac strict_Ispair2 1)
        ]);

qed_goalw "strict_spair_rev" thy [spair_def]
        "(:x,y:)~=UU ==> ~x=UU & ~y=UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (rtac strict_Ispair_rev 1),
        (rtac (beta_cfun_sprod RS subst) 1),
        (rtac (inst_sprod_pcpo RS subst) 1),
        (atac 1)
        ]);

qed_goalw "defined_spair_rev" thy [spair_def]
 "(:a,b:) = UU ==> (a = UU | b = UU)"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (rtac defined_Ispair_rev 1),
        (rtac (beta_cfun_sprod RS subst) 1),
        (rtac (inst_sprod_pcpo RS subst) 1),
        (atac 1)
        ]);

qed_goalw "defined_spair" thy [spair_def]
        "[|a~=UU; b~=UU|] ==> (:a,b:) ~= UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_sprod 1),
        (stac inst_sprod_pcpo 1),
        (etac defined_Ispair 1),
        (atac 1)
        ]);

qed_goalw "Exh_Sprod2" thy [spair_def]
        "z=UU | (? a b. z=(:a,b:) & a~=UU & b~=UU)"
 (fn prems =>
        [
        (rtac (Exh_Sprod RS disjE) 1),
        (rtac disjI1 1),
        (stac inst_sprod_pcpo 1),
        (atac 1),
        (rtac disjI2 1),
        (etac exE 1),
        (etac exE 1),
        (rtac exI 1),
        (rtac exI 1),
        (rtac conjI 1),
        (stac beta_cfun_sprod 1),
        (fast_tac HOL_cs 1),
        (fast_tac HOL_cs 1)
        ]);


qed_goalw "sprodE" thy [spair_def]
"[|p=UU ==> Q;!!x y. [|p=(:x,y:);x~=UU ; y~=UU|] ==> Q|] ==> Q"
(fn prems =>
        [
        (rtac IsprodE 1),
        (resolve_tac prems 1),
        (stac inst_sprod_pcpo 1),
        (atac 1),
        (resolve_tac prems 1),
        (atac 2),
        (atac 2),
        (stac beta_cfun_sprod 1),
        (atac 1)
        ]);


qed_goalw "strict_sfst" thy [sfst_def] 
        "p=UU==>sfst`p=UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun 1),
        (rtac cont_Isfst 1),
        (rtac strict_Isfst 1),
        (rtac (inst_sprod_pcpo RS subst) 1),
        (atac 1)
        ]);

qed_goalw "strict_sfst1" thy [sfst_def,spair_def] 
        "sfst`(:UU,y:) = UU"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Isfst 1),
        (rtac strict_Isfst1 1)
        ]);
 
qed_goalw "strict_sfst2" thy [sfst_def,spair_def] 
        "sfst`(:x,UU:) = UU"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Isfst 1),
        (rtac strict_Isfst2 1)
        ]);

qed_goalw "strict_ssnd" thy [ssnd_def] 
        "p=UU==>ssnd`p=UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun 1),
        (rtac cont_Issnd 1),
        (rtac strict_Issnd 1),
        (rtac (inst_sprod_pcpo RS subst) 1),
        (atac 1)
        ]);

qed_goalw "strict_ssnd1" thy [ssnd_def,spair_def] 
        "ssnd`(:UU,y:) = UU"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Issnd 1),
        (rtac strict_Issnd1 1)
        ]);

qed_goalw "strict_ssnd2" thy [ssnd_def,spair_def] 
        "ssnd`(:x,UU:) = UU"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Issnd 1),
        (rtac strict_Issnd2 1)
        ]);

qed_goalw "sfst2" thy [sfst_def,spair_def] 
        "y~=UU ==>sfst`(:x,y:)=x"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Isfst 1),
        (etac Isfst2 1)
        ]);

qed_goalw "ssnd2" thy [ssnd_def,spair_def] 
        "x~=UU ==>ssnd`(:x,y:)=y"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Issnd 1),
        (etac Issnd2 1)
        ]);


qed_goalw "defined_sfstssnd" thy [sfst_def,ssnd_def,spair_def]
        "p~=UU ==> sfst`p ~=UU & ssnd`p ~=UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun 1),
        (rtac cont_Issnd 1),
        (stac beta_cfun 1),
        (rtac cont_Isfst 1),
        (rtac defined_IsfstIssnd 1),
        (rtac (inst_sprod_pcpo RS subst) 1),
        (atac 1)
        ]);
 

qed_goalw "surjective_pairing_Sprod2" thy 
        [sfst_def,ssnd_def,spair_def] "(:sfst`p , ssnd`p:) = p"
 (fn prems =>
        [
        (stac beta_cfun_sprod 1),
        (stac beta_cfun 1),
        (rtac cont_Issnd 1),
        (stac beta_cfun 1),
        (rtac cont_Isfst 1),
        (rtac (surjective_pairing_Sprod RS sym) 1)
        ]);


qed_goalw "lub_sprod2" thy [sfst_def,ssnd_def,spair_def]
"[|chain(S)|] ==> range(S) <<| \
\ (: lub(range(%i. sfst`(S i))), lub(range(%i. ssnd`(S i))) :)"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (stac beta_cfun_sprod 1),
        (stac (beta_cfun RS ext) 1),
        (rtac cont_Issnd 1),
        (stac (beta_cfun RS ext) 1),
        (rtac cont_Isfst 1),
        (rtac lub_sprod 1),
        (resolve_tac prems 1)
        ]);


bind_thm ("thelub_sprod2", lub_sprod2 RS thelubI);
(*
 "chain ?S1 ==>
 lub (range ?S1) =
 (:lub (range (%i. sfst`(?S1 i))), lub (range (%i. ssnd`(?S1 i))):)" : thm
*)

qed_goalw "ssplit1" thy [ssplit_def]
        "ssplit`f`UU=UU"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (Simp_tac 1),
        (stac strictify1 1),
        (rtac refl 1)
        ]);

qed_goalw "ssplit2" thy [ssplit_def]
        "[|x~=UU;y~=UU|] ==> ssplit`f`(:x,y:)= f`x`y"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (Simp_tac 1),
        (stac strictify2 1),
        (rtac defined_spair 1),
        (resolve_tac prems 1),
        (resolve_tac prems 1),
        (stac beta_cfun 1),
        (Simp_tac 1),
        (stac sfst2 1),
        (resolve_tac prems 1),
        (stac ssnd2 1),
        (resolve_tac prems 1),
        (rtac refl 1)
        ]);


qed_goalw "ssplit3" thy [ssplit_def]
  "ssplit`spair`z=z"
 (fn prems =>
        [
        (stac beta_cfun 1),
        (Simp_tac 1),
        (case_tac "z=UU" 1),
        (hyp_subst_tac 1),
        (rtac strictify1 1),
        (rtac trans 1),
        (rtac strictify2 1),
        (atac 1),
        (stac beta_cfun 1),
        (Simp_tac 1),
        (rtac surjective_pairing_Sprod2 1)
        ]);

(* ------------------------------------------------------------------------ *)
(* install simplifier for Sprod                                             *)
(* ------------------------------------------------------------------------ *)

val Sprod_rews = [strict_spair1,strict_spair2,strict_sfst1,strict_sfst2,
                strict_ssnd1,strict_ssnd2,sfst2,ssnd2,defined_spair,
                ssplit1,ssplit2];
Addsimps Sprod_rews;