(* Title: HOLCF/One.thy
ID: $Id$
Author: Oscar Slotosch
The unit domain.
*)
header {* The unit domain *}
theory One
imports Lift
begin
types one = "unit lift"
translations
"one" <= (type) "unit lift"
constdefs
ONE :: "one"
"ONE == Def ()"
text {* Exhaustion and Elimination for type @{typ one} *}
lemma Exh_one: "t = \<bottom> \<or> t = ONE"
apply (unfold ONE_def)
apply (induct t)
apply simp
apply simp
done
lemma oneE: "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = ONE \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
apply (rule Exh_one [THEN disjE])
apply fast
apply fast
done
lemma dist_less_one [simp]: "\<not> ONE \<sqsubseteq> \<bottom>"
apply (unfold ONE_def)
apply simp
done
lemma dist_eq_one [simp]: "ONE \<noteq> \<bottom>" "\<bottom> \<noteq> ONE"
apply (unfold ONE_def)
apply simp_all
done
lemma compact_ONE [simp]: "compact ONE"
by (rule compact_chfin)
text {* Case analysis function for type @{typ one} *}
definition
one_when :: "'a::pcpo \<rightarrow> one \<rightarrow> 'a" where
"one_when = (\<Lambda> a. strictify\<cdot>(\<Lambda> _. a))"
translations
"case x of CONST ONE \<Rightarrow> t" == "CONST one_when\<cdot>t\<cdot>x"
"\<Lambda> (CONST ONE). t" == "CONST one_when\<cdot>t"
lemma one_when1 [simp]: "(case \<bottom> of ONE \<Rightarrow> t) = \<bottom>"
by (simp add: one_when_def)
lemma one_when2 [simp]: "(case ONE of ONE \<Rightarrow> t) = t"
by (simp add: one_when_def)
lemma one_when3 [simp]: "(case x of ONE \<Rightarrow> ONE) = x"
by (rule_tac p=x in oneE, simp_all)
end