| author | wenzelm |
| Wed, 10 Aug 2011 14:28:55 +0200 | |
| changeset 44111 | 2d16c693d536 |
| parent 40406 | 313a24b66a8d |
| permissions | -rw-r--r-- |
% \begin{isabellebody}% \def\isabellecontext{Ifexpr}% % \isadelimtheory % \endisadelimtheory % \isatagtheory % \endisatagtheory {\isafoldtheory}% % \isadelimtheory % \endisadelimtheory % \isamarkupsubsection{Case Study: Boolean Expressions% } \isamarkuptrue% % \begin{isamarkuptext}% \label{sec:boolex}\index{boolean expressions example|(} The aim of this case study is twofold: it shows how to model boolean expressions and some algorithms for manipulating them, and it demonstrates the constructs introduced above.% \end{isamarkuptext}% \isamarkuptrue% % \isamarkupsubsubsection{Modelling Boolean Expressions% } \isamarkuptrue% % \begin{isamarkuptext}% We want to represent boolean expressions built up from variables and constants by negation and conjunction. The following datatype serves exactly that purpose:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{datatype}\isamarkupfalse% \ boolex\ {\isaliteral{3D}{\isacharequal}}\ Const\ bool\ {\isaliteral{7C}{\isacharbar}}\ Var\ nat\ {\isaliteral{7C}{\isacharbar}}\ Neg\ boolex\isanewline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ And\ boolex\ boolex% \begin{isamarkuptext}% \noindent The two constants are represented by \isa{Const\ True} and \isa{Const\ False}. Variables are represented by terms of the form \isa{Var\ n}, where \isa{n} is a natural number (type \isa{nat}). For example, the formula $P@0 \land \neg P@1$ is represented by the term \isa{And\ {\isaliteral{28}{\isacharparenleft}}Var\ {\isadigit{0}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}Neg\ {\isaliteral{28}{\isacharparenleft}}Var\ {\isadigit{1}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}}. \subsubsection{The Value of a Boolean Expression} The value of a boolean expression depends on the value of its variables. Hence the function \isa{value} takes an additional parameter, an \emph{environment} of type \isa{nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}, which maps variables to their values:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{primrec}\isamarkupfalse% \ {\isaliteral{22}{\isachardoublequoteopen}}value{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}boolex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}value\ {\isaliteral{28}{\isacharparenleft}}Const\ b{\isaliteral{29}{\isacharparenright}}\ env\ {\isaliteral{3D}{\isacharequal}}\ b{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}value\ {\isaliteral{28}{\isacharparenleft}}Var\ x{\isaliteral{29}{\isacharparenright}}\ \ \ env\ {\isaliteral{3D}{\isacharequal}}\ env\ x{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}value\ {\isaliteral{28}{\isacharparenleft}}Neg\ b{\isaliteral{29}{\isacharparenright}}\ \ \ env\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}\ value\ b\ env{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}value\ {\isaliteral{28}{\isacharparenleft}}And\ b\ c{\isaliteral{29}{\isacharparenright}}\ env\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}value\ b\ env\ {\isaliteral{5C3C616E643E}{\isasymand}}\ value\ c\ env{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \noindent \subsubsection{If-Expressions} An alternative and often more efficient (because in a certain sense canonical) representation are so-called \emph{If-expressions} built up from constants (\isa{CIF}), variables (\isa{VIF}) and conditionals (\isa{IF}):% \end{isamarkuptext}% \isamarkuptrue% \isacommand{datatype}\isamarkupfalse% \ ifex\ {\isaliteral{3D}{\isacharequal}}\ CIF\ bool\ {\isaliteral{7C}{\isacharbar}}\ VIF\ nat\ {\isaliteral{7C}{\isacharbar}}\ IF\ ifex\ ifex\ ifex% \begin{isamarkuptext}% \noindent The evaluation of If-expressions proceeds as for \isa{boolex}:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{primrec}\isamarkupfalse% \ valif\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}ifex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{28}{\isacharparenleft}}nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}valif\ {\isaliteral{28}{\isacharparenleft}}CIF\ b{\isaliteral{29}{\isacharparenright}}\ \ \ \ env\ {\isaliteral{3D}{\isacharequal}}\ b{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}valif\ {\isaliteral{28}{\isacharparenleft}}VIF\ x{\isaliteral{29}{\isacharparenright}}\ \ \ \ env\ {\isaliteral{3D}{\isacharequal}}\ env\ x{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}valif\ {\isaliteral{28}{\isacharparenleft}}IF\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ env\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}if\ valif\ b\ env\ then\ valif\ t\ env\isanewline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ valif\ e\ env{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \subsubsection{Converting Boolean and If-Expressions} The type \isa{boolex} is close to the customary representation of logical formulae, whereas \isa{ifex} is designed for efficiency. It is easy to translate from \isa{boolex} into \isa{ifex}:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{primrec}\isamarkupfalse% \ bool{\isadigit{2}}if\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}boolex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ ifex{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}bool{\isadigit{2}}if\ {\isaliteral{28}{\isacharparenleft}}Const\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ CIF\ b{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}bool{\isadigit{2}}if\ {\isaliteral{28}{\isacharparenleft}}Var\ x{\isaliteral{29}{\isacharparenright}}\ \ \ {\isaliteral{3D}{\isacharequal}}\ VIF\ x{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}bool{\isadigit{2}}if\ {\isaliteral{28}{\isacharparenleft}}Neg\ b{\isaliteral{29}{\isacharparenright}}\ \ \ {\isaliteral{3D}{\isacharequal}}\ IF\ {\isaliteral{28}{\isacharparenleft}}bool{\isadigit{2}}if\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}CIF\ False{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}CIF\ True{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}bool{\isadigit{2}}if\ {\isaliteral{28}{\isacharparenleft}}And\ b\ c{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ IF\ {\isaliteral{28}{\isacharparenleft}}bool{\isadigit{2}}if\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}bool{\isadigit{2}}if\ c{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}CIF\ False{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \noindent At last, we have something we can verify: that \isa{bool{\isadigit{2}}if} preserves the value of its argument:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% \ {\isaliteral{22}{\isachardoublequoteopen}}valif\ {\isaliteral{28}{\isacharparenleft}}bool{\isadigit{2}}if\ b{\isaliteral{29}{\isacharparenright}}\ env\ {\isaliteral{3D}{\isacharequal}}\ value\ b\ env{\isaliteral{22}{\isachardoublequoteclose}}% \isadelimproof % \endisadelimproof % \isatagproof % \begin{isamarkuptxt}% \noindent The proof is canonical:% \end{isamarkuptxt}% \isamarkuptrue% \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ b{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{apply}\isamarkupfalse% {\isaliteral{28}{\isacharparenleft}}auto{\isaliteral{29}{\isacharparenright}}\isanewline \isacommand{done}\isamarkupfalse% % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \begin{isamarkuptext}% \noindent In fact, all proofs in this case study look exactly like this. Hence we do not show them below. More interesting is the transformation of If-expressions into a normal form where the first argument of \isa{IF} cannot be another \isa{IF} but must be a constant or variable. Such a normal form can be computed by repeatedly replacing a subterm of the form \isa{IF\ {\isaliteral{28}{\isacharparenleft}}IF\ b\ x\ y{\isaliteral{29}{\isacharparenright}}\ z\ u} by \isa{IF\ b\ {\isaliteral{28}{\isacharparenleft}}IF\ x\ z\ u{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}IF\ y\ z\ u{\isaliteral{29}{\isacharparenright}}}, which has the same value. The following primitive recursive functions perform this task:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{primrec}\isamarkupfalse% \ normif\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}ifex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ ifex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ ifex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ ifex{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}normif\ {\isaliteral{28}{\isacharparenleft}}CIF\ b{\isaliteral{29}{\isacharparenright}}\ \ \ \ t\ e\ {\isaliteral{3D}{\isacharequal}}\ IF\ {\isaliteral{28}{\isacharparenleft}}CIF\ b{\isaliteral{29}{\isacharparenright}}\ t\ e{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}normif\ {\isaliteral{28}{\isacharparenleft}}VIF\ x{\isaliteral{29}{\isacharparenright}}\ \ \ \ t\ e\ {\isaliteral{3D}{\isacharequal}}\ IF\ {\isaliteral{28}{\isacharparenleft}}VIF\ x{\isaliteral{29}{\isacharparenright}}\ t\ e{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}normif\ {\isaliteral{28}{\isacharparenleft}}IF\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ u\ f\ {\isaliteral{3D}{\isacharequal}}\ normif\ b\ {\isaliteral{28}{\isacharparenleft}}normif\ t\ u\ f{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}normif\ e\ u\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline \isanewline \isacommand{primrec}\isamarkupfalse% \ norm\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}ifex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ ifex{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}norm\ {\isaliteral{28}{\isacharparenleft}}CIF\ b{\isaliteral{29}{\isacharparenright}}\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ CIF\ b{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}norm\ {\isaliteral{28}{\isacharparenleft}}VIF\ x{\isaliteral{29}{\isacharparenright}}\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ VIF\ x{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}norm\ {\isaliteral{28}{\isacharparenleft}}IF\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ normif\ b\ {\isaliteral{28}{\isacharparenleft}}norm\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{28}{\isacharparenleft}}norm\ e{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \noindent Their interplay is tricky; we leave it to you to develop an intuitive understanding. Fortunately, Isabelle can help us to verify that the transformation preserves the value of the expression:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{theorem}\isamarkupfalse% \ {\isaliteral{22}{\isachardoublequoteopen}}valif\ {\isaliteral{28}{\isacharparenleft}}norm\ b{\isaliteral{29}{\isacharparenright}}\ env\ {\isaliteral{3D}{\isacharequal}}\ valif\ b\ env{\isaliteral{22}{\isachardoublequoteclose}}% \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \begin{isamarkuptext}% \noindent The proof is canonical, provided we first show the following simplification lemma, which also helps to understand what \isa{normif} does:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% \ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\isanewline \ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ e{\isaliteral{2E}{\isachardot}}\ valif\ {\isaliteral{28}{\isacharparenleft}}normif\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ env\ {\isaliteral{3D}{\isacharequal}}\ valif\ {\isaliteral{28}{\isacharparenleft}}IF\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ env{\isaliteral{22}{\isachardoublequoteclose}}% \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \begin{isamarkuptext}% \noindent Note that the lemma does not have a name, but is implicitly used in the proof of the theorem shown above because of the \isa{{\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}} attribute. But how can we be sure that \isa{norm} really produces a normal form in the above sense? We define a function that tests If-expressions for normality:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{primrec}\isamarkupfalse% \ normal\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}ifex\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}normal{\isaliteral{28}{\isacharparenleft}}CIF\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ True{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}normal{\isaliteral{28}{\isacharparenleft}}VIF\ x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ True{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline {\isaliteral{22}{\isachardoublequoteopen}}normal{\isaliteral{28}{\isacharparenleft}}IF\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}normal\ t\ {\isaliteral{5C3C616E643E}{\isasymand}}\ normal\ e\ {\isaliteral{5C3C616E643E}{\isasymand}}\isanewline \ \ \ \ \ {\isaliteral{28}{\isacharparenleft}}case\ b\ of\ CIF\ b\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ True\ {\isaliteral{7C}{\isacharbar}}\ VIF\ x\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ True\ {\isaliteral{7C}{\isacharbar}}\ IF\ x\ y\ z\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ False{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \noindent Now we prove \isa{normal\ {\isaliteral{28}{\isacharparenleft}}norm\ b{\isaliteral{29}{\isacharparenright}}}. Of course, this requires a lemma about normality of \isa{normif}:% \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% \ {\isaliteral{5B}{\isacharbrackleft}}simp{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ e{\isaliteral{2E}{\isachardot}}\ normal{\isaliteral{28}{\isacharparenleft}}normif\ b\ t\ e{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}normal\ t\ {\isaliteral{5C3C616E643E}{\isasymand}}\ normal\ e{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \begin{isamarkuptext}% \medskip How do we come up with the required lemmas? Try to prove the main theorems without them and study carefully what \isa{auto} leaves unproved. This can provide the clue. The necessity of universal quantification (\isa{{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t\ e}) in the two lemmas is explained in \S\ref{sec:InductionHeuristics} \begin{exercise} We strengthen the definition of a \isa{normal} If-expression as follows: the first argument of all \isa{IF}s must be a variable. Adapt the above development to this changed requirement. (Hint: you may need to formulate some of the goals as implications (\isa{{\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}}) rather than equalities (\isa{{\isaliteral{3D}{\isacharequal}}}).) \end{exercise} \index{boolean expressions example|)}% \end{isamarkuptext}% \isamarkuptrue% % \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimproof % \endisadelimproof % \isatagproof % \endisatagproof {\isafoldproof}% % \isadelimproof % \endisadelimproof % \isadelimtheory % \endisadelimtheory % \isatagtheory % \endisatagtheory {\isafoldtheory}% % \isadelimtheory % \endisadelimtheory \end{isabellebody}% %%% Local Variables: %%% mode: latex %%% TeX-master: "root" %%% End: