src/HOL/Code_Numeral.thy
author krauss
Sun, 01 Apr 2012 22:03:45 +0200
changeset 47259 2d4ea84278da
parent 47108 2a1953f0d20d
child 47255 30a1692557b0
permissions -rw-r--r--
removed old HOL4 import -- corresponding exporter is lost, code is broken, no users known, maintenance nightmare

(* Author: Florian Haftmann, TU Muenchen *)

header {* Type of target language numerals *}

theory Code_Numeral
imports Nat_Numeral Nat_Transfer Divides
begin

text {*
  Code numerals are isomorphic to HOL @{typ nat} but
  mapped to target-language builtin numerals.
*}

subsection {* Datatype of target language numerals *}

typedef (open) code_numeral = "UNIV \<Colon> nat set"
  morphisms nat_of of_nat ..

lemma of_nat_nat_of [simp]:
  "of_nat (nat_of k) = k"
  by (rule nat_of_inverse)

lemma nat_of_of_nat [simp]:
  "nat_of (of_nat n) = n"
  by (rule of_nat_inverse) (rule UNIV_I)

lemma [measure_function]:
  "is_measure nat_of" by (rule is_measure_trivial)

lemma code_numeral:
  "(\<And>n\<Colon>code_numeral. PROP P n) \<equiv> (\<And>n\<Colon>nat. PROP P (of_nat n))"
proof
  fix n :: nat
  assume "\<And>n\<Colon>code_numeral. PROP P n"
  then show "PROP P (of_nat n)" .
next
  fix n :: code_numeral
  assume "\<And>n\<Colon>nat. PROP P (of_nat n)"
  then have "PROP P (of_nat (nat_of n))" .
  then show "PROP P n" by simp
qed

lemma code_numeral_case:
  assumes "\<And>n. k = of_nat n \<Longrightarrow> P"
  shows P
  by (rule assms [of "nat_of k"]) simp

lemma code_numeral_induct_raw:
  assumes "\<And>n. P (of_nat n)"
  shows "P k"
proof -
  from assms have "P (of_nat (nat_of k))" .
  then show ?thesis by simp
qed

lemma nat_of_inject [simp]:
  "nat_of k = nat_of l \<longleftrightarrow> k = l"
  by (rule nat_of_inject)

lemma of_nat_inject [simp]:
  "of_nat n = of_nat m \<longleftrightarrow> n = m"
  by (rule of_nat_inject) (rule UNIV_I)+

instantiation code_numeral :: zero
begin

definition [simp, code del]:
  "0 = of_nat 0"

instance ..

end

definition Suc where [simp]:
  "Suc k = of_nat (Nat.Suc (nat_of k))"

rep_datatype "0 \<Colon> code_numeral" Suc
proof -
  fix P :: "code_numeral \<Rightarrow> bool"
  fix k :: code_numeral
  assume "P 0" then have init: "P (of_nat 0)" by simp
  assume "\<And>k. P k \<Longrightarrow> P (Suc k)"
    then have "\<And>n. P (of_nat n) \<Longrightarrow> P (Suc (of_nat n))" .
    then have step: "\<And>n. P (of_nat n) \<Longrightarrow> P (of_nat (Nat.Suc n))" by simp
  from init step have "P (of_nat (nat_of k))"
    by (induct ("nat_of k")) simp_all
  then show "P k" by simp
qed simp_all

declare code_numeral_case [case_names nat, cases type: code_numeral]
declare code_numeral.induct [case_names nat, induct type: code_numeral]

lemma code_numeral_decr [termination_simp]:
  "k \<noteq> of_nat 0 \<Longrightarrow> nat_of k - Nat.Suc 0 < nat_of k"
  by (cases k) simp

lemma [simp, code]:
  "code_numeral_size = nat_of"
proof (rule ext)
  fix k
  have "code_numeral_size k = nat_size (nat_of k)"
    by (induct k rule: code_numeral.induct) (simp_all del: zero_code_numeral_def Suc_def, simp_all)
  also have "nat_size (nat_of k) = nat_of k" by (induct ("nat_of k")) simp_all
  finally show "code_numeral_size k = nat_of k" .
qed

lemma [simp, code]:
  "size = nat_of"
proof (rule ext)
  fix k
  show "size k = nat_of k"
  by (induct k) (simp_all del: zero_code_numeral_def Suc_def, simp_all)
qed

lemmas [code del] = code_numeral.recs code_numeral.cases

lemma [code]:
  "HOL.equal k l \<longleftrightarrow> HOL.equal (nat_of k) (nat_of l)"
  by (cases k, cases l) (simp add: equal)

lemma [code nbe]:
  "HOL.equal (k::code_numeral) k \<longleftrightarrow> True"
  by (rule equal_refl)


subsection {* Basic arithmetic *}

instantiation code_numeral :: "{minus, linordered_semidom, semiring_div, linorder}"
begin

definition [simp, code del]:
  "(1\<Colon>code_numeral) = of_nat 1"

definition [simp, code del]:
  "n + m = of_nat (nat_of n + nat_of m)"

definition [simp, code del]:
  "n - m = of_nat (nat_of n - nat_of m)"

definition [simp, code del]:
  "n * m = of_nat (nat_of n * nat_of m)"

definition [simp, code del]:
  "n div m = of_nat (nat_of n div nat_of m)"

definition [simp, code del]:
  "n mod m = of_nat (nat_of n mod nat_of m)"

definition [simp, code del]:
  "n \<le> m \<longleftrightarrow> nat_of n \<le> nat_of m"

definition [simp, code del]:
  "n < m \<longleftrightarrow> nat_of n < nat_of m"

instance proof
qed (auto simp add: code_numeral left_distrib intro: mult_commute)

end

lemma nat_of_numeral [simp]: "nat_of (numeral k) = numeral k"
  by (induct k rule: num_induct) (simp_all add: numeral_inc)

definition Num :: "num \<Rightarrow> code_numeral"
  where [simp, code_abbrev]: "Num = numeral"

code_datatype "0::code_numeral" Num

lemma one_code_numeral_code [code]:
  "(1\<Colon>code_numeral) = Numeral1"
  by simp

lemma [code_abbrev]: "Numeral1 = (1\<Colon>code_numeral)"
  using one_code_numeral_code ..

lemma plus_code_numeral_code [code nbe]:
  "of_nat n + of_nat m = of_nat (n + m)"
  by simp

lemma minus_code_numeral_code [code nbe]:
  "of_nat n - of_nat m = of_nat (n - m)"
  by simp

lemma times_code_numeral_code [code nbe]:
  "of_nat n * of_nat m = of_nat (n * m)"
  by simp

lemma less_eq_code_numeral_code [code nbe]:
  "of_nat n \<le> of_nat m \<longleftrightarrow> n \<le> m"
  by simp

lemma less_code_numeral_code [code nbe]:
  "of_nat n < of_nat m \<longleftrightarrow> n < m"
  by simp

lemma code_numeral_zero_minus_one:
  "(0::code_numeral) - 1 = 0"
  by simp

lemma Suc_code_numeral_minus_one:
  "Suc n - 1 = n"
  by simp

lemma of_nat_code [code]:
  "of_nat = Nat.of_nat"
proof
  fix n :: nat
  have "Nat.of_nat n = of_nat n"
    by (induct n) simp_all
  then show "of_nat n = Nat.of_nat n"
    by (rule sym)
qed

lemma code_numeral_not_eq_zero: "i \<noteq> of_nat 0 \<longleftrightarrow> i \<ge> 1"
  by (cases i) auto

definition nat_of_aux :: "code_numeral \<Rightarrow> nat \<Rightarrow> nat" where
  "nat_of_aux i n = nat_of i + n"

lemma nat_of_aux_code [code]:
  "nat_of_aux i n = (if i = 0 then n else nat_of_aux (i - 1) (Nat.Suc n))"
  by (auto simp add: nat_of_aux_def code_numeral_not_eq_zero)

lemma nat_of_code [code]:
  "nat_of i = nat_of_aux i 0"
  by (simp add: nat_of_aux_def)

definition div_mod :: "code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<times> code_numeral" where
  [code del]: "div_mod n m = (n div m, n mod m)"

lemma [code]:
  "div_mod n m = (if m = 0 then (0, n) else (n div m, n mod m))"
  unfolding div_mod_def by auto

lemma [code]:
  "n div m = fst (div_mod n m)"
  unfolding div_mod_def by simp

lemma [code]:
  "n mod m = snd (div_mod n m)"
  unfolding div_mod_def by simp

definition int_of :: "code_numeral \<Rightarrow> int" where
  "int_of = Nat.of_nat o nat_of"

lemma int_of_code [code]:
  "int_of k = (if k = 0 then 0
    else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"
proof -
  have "(nat_of k div 2) * 2 + nat_of k mod 2 = nat_of k" 
    by (rule mod_div_equality)
  then have "int ((nat_of k div 2) * 2 + nat_of k mod 2) = int (nat_of k)" 
    by simp
  then have "int (nat_of k) = int (nat_of k div 2) * 2 + int (nat_of k mod 2)" 
    unfolding of_nat_mult of_nat_add by simp
  then show ?thesis by (auto simp add: int_of_def mult_ac)
qed


hide_const (open) of_nat nat_of Suc int_of


subsection {* Code generator setup *}

text {* Implementation of code numerals by bounded integers *}

code_type code_numeral
  (SML "int")
  (OCaml "Big'_int.big'_int")
  (Haskell "Integer")
  (Scala "BigInt")

code_instance code_numeral :: equal
  (Haskell -)

setup {*
  Numeral.add_code @{const_name Num}
    false Code_Printer.literal_naive_numeral "SML"
  #> fold (Numeral.add_code @{const_name Num}
    false Code_Printer.literal_numeral) ["OCaml", "Haskell", "Scala"]
*}

code_reserved SML Int int
code_reserved Eval Integer

code_const "0::code_numeral"
  (SML "0")
  (OCaml "Big'_int.zero'_big'_int")
  (Haskell "0")
  (Scala "BigInt(0)")

code_const "plus \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"
  (SML "Int.+/ ((_),/ (_))")
  (OCaml "Big'_int.add'_big'_int")
  (Haskell infixl 6 "+")
  (Scala infixl 7 "+")
  (Eval infixl 8 "+")

code_const "minus \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"
  (SML "Int.max/ (0 : int,/ Int.-/ ((_),/ (_)))")
  (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int/ (Big'_int.sub'_big'_int/ _/ _)")
  (Haskell "max/ (0 :: Integer)/ (_/ -/ _)")
  (Scala "!(_/ -/ _).max(0)")
  (Eval "Integer.max/ 0/ (_/ -/ _)")

code_const "times \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> code_numeral"
  (SML "Int.*/ ((_),/ (_))")
  (OCaml "Big'_int.mult'_big'_int")
  (Haskell infixl 7 "*")
  (Scala infixl 8 "*")
  (Eval infixl 8 "*")

code_const Code_Numeral.div_mod
  (SML "!(fn n => fn m =>/ if m = 0/ then (0, n) else/ (Int.div (n, m), Int.mod (n, m)))")
  (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)")
  (Haskell "divMod")
  (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))")
  (Eval "!(fn n => fn m =>/ if m = 0/ then (0, n) else/ (Integer.div'_mod n m))")

code_const "HOL.equal \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool"
  (SML "!((_ : Int.int) = _)")
  (OCaml "Big'_int.eq'_big'_int")
  (Haskell infix 4 "==")
  (Scala infixl 5 "==")
  (Eval "!((_ : int) = _)")

code_const "less_eq \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool"
  (SML "Int.<=/ ((_),/ (_))")
  (OCaml "Big'_int.le'_big'_int")
  (Haskell infix 4 "<=")
  (Scala infixl 4 "<=")
  (Eval infixl 6 "<=")

code_const "less \<Colon> code_numeral \<Rightarrow> code_numeral \<Rightarrow> bool"
  (SML "Int.</ ((_),/ (_))")
  (OCaml "Big'_int.lt'_big'_int")
  (Haskell infix 4 "<")
  (Scala infixl 4 "<")
  (Eval infixl 6 "<")

code_modulename SML
  Code_Numeral Arith

code_modulename OCaml
  Code_Numeral Arith

code_modulename Haskell
  Code_Numeral Arith

end