(* Title: ZF/AC/WO6_WO1.thy
Author: Krzysztof Grabczewski
Proofs needed to state that formulations WO1,...,WO6 are all equivalent.
The only hard one is WO6 ==> WO1.
Every proof (except WO6 ==> WO1 and WO1 ==> WO2) are described as "clear"
by Rubin & Rubin (page 2).
They refer reader to a book by Gödel to see the proof WO1 ==> WO2.
Fortunately order types made this proof also very easy.
*)
theory WO6_WO1
imports Cardinal_aux
begin
(* Auxiliary definitions used in proof *)
definition
NN :: "i => i" where
"NN(y) == {m \<in> nat. \<exists>a. \<exists>f. Ord(a) & domain(f)=a &
(\<Union>b<a. f`b) = y & (\<forall>b<a. f`b \<lesssim> m)}"
definition
uu :: "[i, i, i, i] => i" where
"uu(f, beta, gamma, delta) == (f`beta * f`gamma) \<inter> f`delta"
(** Definitions for case 1 **)
definition
vv1 :: "[i, i, i] => i" where
"vv1(f,m,b) ==
let g = \<mu> g. (\<exists>d. Ord(d) & (domain(uu(f,b,g,d)) \<noteq> 0 &
domain(uu(f,b,g,d)) \<lesssim> m));
d = \<mu> d. domain(uu(f,b,g,d)) \<noteq> 0 &
domain(uu(f,b,g,d)) \<lesssim> m
in if f`b \<noteq> 0 then domain(uu(f,b,g,d)) else 0"
definition
ww1 :: "[i, i, i] => i" where
"ww1(f,m,b) == f`b - vv1(f,m,b)"
definition
gg1 :: "[i, i, i] => i" where
"gg1(f,a,m) == \<lambda>b \<in> a++a. if b<a then vv1(f,m,b) else ww1(f,m,b--a)"
(** Definitions for case 2 **)
definition
vv2 :: "[i, i, i, i] => i" where
"vv2(f,b,g,s) ==
if f`g \<noteq> 0 then {uu(f, b, g, \<mu> d. uu(f,b,g,d) \<noteq> 0)`s} else 0"
definition
ww2 :: "[i, i, i, i] => i" where
"ww2(f,b,g,s) == f`g - vv2(f,b,g,s)"
definition
gg2 :: "[i, i, i, i] => i" where
"gg2(f,a,b,s) ==
\<lambda>g \<in> a++a. if g<a then vv2(f,b,g,s) else ww2(f,b,g--a,s)"
lemma WO2_WO3: "WO2 ==> WO3"
by (unfold WO2_def WO3_def, fast)
(* ********************************************************************** *)
lemma WO3_WO1: "WO3 ==> WO1"
apply (unfold eqpoll_def WO1_def WO3_def)
apply (intro allI)
apply (drule_tac x=A in spec)
apply (blast intro: bij_is_inj well_ord_rvimage
well_ord_Memrel [THEN well_ord_subset])
done
(* ********************************************************************** *)
lemma WO1_WO2: "WO1 ==> WO2"
apply (unfold eqpoll_def WO1_def WO2_def)
apply (blast intro!: Ord_ordertype ordermap_bij)
done
(* ********************************************************************** *)
lemma lam_sets: "f \<in> A->B ==> (\<lambda>x \<in> A. {f`x}): A -> {{b}. b \<in> B}"
by (fast intro!: lam_type apply_type)
lemma surj_imp_eq': "f \<in> surj(A,B) ==> (\<Union>a \<in> A. {f`a}) = B"
apply (unfold surj_def)
apply (fast elim!: apply_type)
done
lemma surj_imp_eq: "[| f \<in> surj(A,B); Ord(A) |] ==> (\<Union>a<A. {f`a}) = B"
by (fast dest!: surj_imp_eq' intro!: ltI elim!: ltE)
lemma WO1_WO4: "WO1 ==> WO4(1)"
apply (unfold WO1_def WO4_def)
apply (rule allI)
apply (erule_tac x = A in allE)
apply (erule exE)
apply (intro exI conjI)
apply (erule Ord_ordertype)
apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_is_fun, THEN lam_sets, THEN domain_of_fun])
apply (simp_all add: singleton_eqpoll_1 eqpoll_imp_lepoll Ord_ordertype
ordermap_bij [THEN bij_converse_bij, THEN bij_is_surj, THEN surj_imp_eq]
ltD)
done
(* ********************************************************************** *)
lemma WO4_mono: "[| m\<le>n; WO4(m) |] ==> WO4(n)"
apply (unfold WO4_def)
apply (blast dest!: spec intro: lepoll_trans [OF _ le_imp_lepoll])
done
(* ********************************************************************** *)
lemma WO4_WO5: "[| m \<in> nat; 1\<le>m; WO4(m) |] ==> WO5"
by (unfold WO4_def WO5_def, blast)
(* ********************************************************************** *)
lemma WO5_WO6: "WO5 ==> WO6"
by (unfold WO4_def WO5_def WO6_def, blast)
(* **********************************************************************
The proof of "WO6 ==> WO1". Simplified by L C Paulson.
From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin,
pages 2-5
************************************************************************* *)
lemma lt_oadd_odiff_disj:
"[| k < i++j; Ord(i); Ord(j) |]
==> k < i | (~ k<i & k = i ++ (k--i) & (k--i)<j)"
apply (rule_tac i = k and j = i in Ord_linear2)
prefer 4
apply (drule odiff_lt_mono2, assumption)
apply (simp add: oadd_odiff_inverse odiff_oadd_inverse)
apply (auto elim!: lt_Ord)
done
(* ********************************************************************** *)
(* The most complicated part of the proof - lemma ii - p. 2-4 *)
(* ********************************************************************** *)
(* ********************************************************************** *)
(* some properties of relation uu(beta, gamma, delta) - p. 2 *)
(* ********************************************************************** *)
lemma domain_uu_subset: "domain(uu(f,b,g,d)) \<subseteq> f`b"
by (unfold uu_def, blast)
lemma quant_domain_uu_lepoll_m:
"\<forall>b<a. f`b \<lesssim> m ==> \<forall>b<a. \<forall>g<a. \<forall>d<a. domain(uu(f,b,g,d)) \<lesssim> m"
by (blast intro: domain_uu_subset [THEN subset_imp_lepoll] lepoll_trans)
lemma uu_subset1: "uu(f,b,g,d) \<subseteq> f`b * f`g"
by (unfold uu_def, blast)
lemma uu_subset2: "uu(f,b,g,d) \<subseteq> f`d"
by (unfold uu_def, blast)
lemma uu_lepoll_m: "[| \<forall>b<a. f`b \<lesssim> m; d<a |] ==> uu(f,b,g,d) \<lesssim> m"
by (blast intro: uu_subset2 [THEN subset_imp_lepoll] lepoll_trans)
(* ********************************************************************** *)
(* Two cases for lemma ii *)
(* ********************************************************************** *)
lemma cases:
"\<forall>b<a. \<forall>g<a. \<forall>d<a. u(f,b,g,d) \<lesssim> m
==> (\<forall>b<a. f`b \<noteq> 0 \<longrightarrow>
(\<exists>g<a. \<exists>d<a. u(f,b,g,d) \<noteq> 0 & u(f,b,g,d) \<prec> m))
| (\<exists>b<a. f`b \<noteq> 0 & (\<forall>g<a. \<forall>d<a. u(f,b,g,d) \<noteq> 0 \<longrightarrow>
u(f,b,g,d) \<approx> m))"
apply (unfold lesspoll_def)
apply (blast del: equalityI)
done
(* ********************************************************************** *)
(* Lemmas used in both cases *)
(* ********************************************************************** *)
lemma UN_oadd: "Ord(a) ==> (\<Union>b<a++a. C(b)) = (\<Union>b<a. C(b) \<union> C(a++b))"
by (blast intro: ltI lt_oadd1 oadd_lt_mono2 dest!: lt_oadd_disj)
(* ********************************************************************** *)
(* Case 1: lemmas *)
(* ********************************************************************** *)
lemma vv1_subset: "vv1(f,m,b) \<subseteq> f`b"
by (simp add: vv1_def Let_def domain_uu_subset)
(* ********************************************************************** *)
(* Case 1: Union of images is the whole "y" *)
(* ********************************************************************** *)
lemma UN_gg1_eq:
"[| Ord(a); m \<in> nat |] ==> (\<Union>b<a++a. gg1(f,a,m)`b) = (\<Union>b<a. f`b)"
by (simp add: gg1_def UN_oadd lt_oadd1 oadd_le_self [THEN le_imp_not_lt]
lt_Ord odiff_oadd_inverse ltD vv1_subset [THEN Diff_partition]
ww1_def)
lemma domain_gg1: "domain(gg1(f,a,m)) = a++a"
by (simp add: lam_funtype [THEN domain_of_fun] gg1_def)
(* ********************************************************************** *)
(* every value of defined function is less than or equipollent to m *)
(* ********************************************************************** *)
lemma nested_LeastI:
"[| P(a, b); Ord(a); Ord(b);
Least_a = (\<mu> a. \<exists>x. Ord(x) & P(a, x)) |]
==> P(Least_a, \<mu> b. P(Least_a, b))"
apply (erule ssubst)
apply (rule_tac Q = "%z. P (z, \<mu> b. P (z, b))" in LeastI2)
apply (fast elim!: LeastI)+
done
lemmas nested_Least_instance =
nested_LeastI [of "%g d. domain(uu(f,b,g,d)) \<noteq> 0 &
domain(uu(f,b,g,d)) \<lesssim> m"] for f b m
lemma gg1_lepoll_m:
"[| Ord(a); m \<in> nat;
\<forall>b<a. f`b \<noteq>0 \<longrightarrow>
(\<exists>g<a. \<exists>d<a. domain(uu(f,b,g,d)) \<noteq> 0 &
domain(uu(f,b,g,d)) \<lesssim> m);
\<forall>b<a. f`b \<lesssim> succ(m); b<a++a |]
==> gg1(f,a,m)`b \<lesssim> m"
apply (simp add: gg1_def empty_lepollI)
apply (safe dest!: lt_oadd_odiff_disj)
(*Case b<a \<in> show vv1(f,m,b) \<lesssim> m *)
apply (simp add: vv1_def Let_def empty_lepollI)
apply (fast intro: nested_Least_instance [THEN conjunct2]
elim!: lt_Ord)
(*Case a\<le>b \<in> show ww1(f,m,b--a) \<lesssim> m *)
apply (simp add: ww1_def empty_lepollI)
apply (case_tac "f` (b--a) = 0", simp add: empty_lepollI)
apply (rule Diff_lepoll, blast)
apply (rule vv1_subset)
apply (drule ospec [THEN mp], assumption+)
apply (elim oexE conjE)
apply (simp add: vv1_def Let_def lt_Ord nested_Least_instance [THEN conjunct1])
done
(* ********************************************************************** *)
(* Case 2: lemmas *)
(* ********************************************************************** *)
(* ********************************************************************** *)
(* Case 2: vv2_subset *)
(* ********************************************************************** *)
lemma ex_d_uu_not_empty:
"[| b<a; g<a; f`b\<noteq>0; f`g\<noteq>0;
y*y \<subseteq> y; (\<Union>b<a. f`b)=y |]
==> \<exists>d<a. uu(f,b,g,d) \<noteq> 0"
by (unfold uu_def, blast)
lemma uu_not_empty:
"[| b<a; g<a; f`b\<noteq>0; f`g\<noteq>0; y*y \<subseteq> y; (\<Union>b<a. f`b)=y |]
==> uu(f,b,g,\<mu> d. (uu(f,b,g,d) \<noteq> 0)) \<noteq> 0"
apply (drule ex_d_uu_not_empty, assumption+)
apply (fast elim!: LeastI lt_Ord)
done
lemma not_empty_rel_imp_domain: "[| r \<subseteq> A*B; r\<noteq>0 |] ==> domain(r)\<noteq>0"
by blast
lemma Least_uu_not_empty_lt_a:
"[| b<a; g<a; f`b\<noteq>0; f`g\<noteq>0; y*y \<subseteq> y; (\<Union>b<a. f`b)=y |]
==> (\<mu> d. uu(f,b,g,d) \<noteq> 0) < a"
apply (erule ex_d_uu_not_empty [THEN oexE], assumption+)
apply (blast intro: Least_le [THEN lt_trans1] lt_Ord)
done
lemma subset_Diff_sing: "[| B \<subseteq> A; a\<notin>B |] ==> B \<subseteq> A-{a}"
by blast
(*Could this be proved more directly?*)
lemma supset_lepoll_imp_eq:
"[| A \<lesssim> m; m \<lesssim> B; B \<subseteq> A; m \<in> nat |] ==> A=B"
apply (erule natE)
apply (fast dest!: lepoll_0_is_0 intro!: equalityI)
apply (safe intro!: equalityI)
apply (rule ccontr)
apply (rule succ_lepoll_natE)
apply (erule lepoll_trans)
apply (rule lepoll_trans)
apply (erule subset_Diff_sing [THEN subset_imp_lepoll], assumption)
apply (rule Diff_sing_lepoll, assumption+)
done
lemma uu_Least_is_fun:
"[| \<forall>g<a. \<forall>d<a. domain(uu(f, b, g, d))\<noteq>0 \<longrightarrow>
domain(uu(f, b, g, d)) \<approx> succ(m);
\<forall>b<a. f`b \<lesssim> succ(m); y*y \<subseteq> y;
(\<Union>b<a. f`b)=y; b<a; g<a; d<a;
f`b\<noteq>0; f`g\<noteq>0; m \<in> nat; s \<in> f`b |]
==> uu(f, b, g, \<mu> d. uu(f,b,g,d)\<noteq>0) \<in> f`b -> f`g"
apply (drule_tac x2=g in ospec [THEN ospec, THEN mp])
apply (rule_tac [3] not_empty_rel_imp_domain [OF uu_subset1 uu_not_empty])
apply (rule_tac [2] Least_uu_not_empty_lt_a, assumption+)
apply (rule rel_is_fun)
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (erule uu_lepoll_m)
apply (rule Least_uu_not_empty_lt_a, assumption+)
apply (rule uu_subset1)
apply (rule supset_lepoll_imp_eq [OF _ eqpoll_sym [THEN eqpoll_imp_lepoll]])
apply (fast intro!: domain_uu_subset)+
done
lemma vv2_subset:
"[| \<forall>g<a. \<forall>d<a. domain(uu(f, b, g, d))\<noteq>0 \<longrightarrow>
domain(uu(f, b, g, d)) \<approx> succ(m);
\<forall>b<a. f`b \<lesssim> succ(m); y*y \<subseteq> y;
(\<Union>b<a. f`b)=y; b<a; g<a; m \<in> nat; s \<in> f`b |]
==> vv2(f,b,g,s) \<subseteq> f`g"
apply (simp add: vv2_def)
apply (blast intro: uu_Least_is_fun [THEN apply_type])
done
(* ********************************************************************** *)
(* Case 2: Union of images is the whole "y" *)
(* ********************************************************************** *)
lemma UN_gg2_eq:
"[| \<forall>g<a. \<forall>d<a. domain(uu(f,b,g,d)) \<noteq> 0 \<longrightarrow>
domain(uu(f,b,g,d)) \<approx> succ(m);
\<forall>b<a. f`b \<lesssim> succ(m); y*y \<subseteq> y;
(\<Union>b<a. f`b)=y; Ord(a); m \<in> nat; s \<in> f`b; b<a |]
==> (\<Union>g<a++a. gg2(f,a,b,s) ` g) = y"
apply (unfold gg2_def)
apply (drule sym)
apply (simp add: ltD UN_oadd oadd_le_self [THEN le_imp_not_lt]
lt_Ord odiff_oadd_inverse ww2_def
vv2_subset [THEN Diff_partition])
done
lemma domain_gg2: "domain(gg2(f,a,b,s)) = a++a"
by (simp add: lam_funtype [THEN domain_of_fun] gg2_def)
(* ********************************************************************** *)
(* every value of defined function is less than or equipollent to m *)
(* ********************************************************************** *)
lemma vv2_lepoll: "[| m \<in> nat; m\<noteq>0 |] ==> vv2(f,b,g,s) \<lesssim> m"
apply (unfold vv2_def)
apply (simp add: empty_lepollI)
apply (fast dest!: le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_0_is_0]
intro!: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll, THEN lepoll_trans]
not_lt_imp_le [THEN le_imp_subset, THEN subset_imp_lepoll]
nat_into_Ord nat_1I)
done
lemma ww2_lepoll:
"[| \<forall>b<a. f`b \<lesssim> succ(m); g<a; m \<in> nat; vv2(f,b,g,d) \<subseteq> f`g |]
==> ww2(f,b,g,d) \<lesssim> m"
apply (unfold ww2_def)
apply (case_tac "f`g = 0")
apply (simp add: empty_lepollI)
apply (drule ospec, assumption)
apply (rule Diff_lepoll, assumption+)
apply (simp add: vv2_def not_emptyI)
done
lemma gg2_lepoll_m:
"[| \<forall>g<a. \<forall>d<a. domain(uu(f,b,g,d)) \<noteq> 0 \<longrightarrow>
domain(uu(f,b,g,d)) \<approx> succ(m);
\<forall>b<a. f`b \<lesssim> succ(m); y*y \<subseteq> y;
(\<Union>b<a. f`b)=y; b<a; s \<in> f`b; m \<in> nat; m\<noteq> 0; g<a++a |]
==> gg2(f,a,b,s) ` g \<lesssim> m"
apply (simp add: gg2_def empty_lepollI)
apply (safe elim!: lt_Ord2 dest!: lt_oadd_odiff_disj)
apply (simp add: vv2_lepoll)
apply (simp add: ww2_lepoll vv2_subset)
done
(* ********************************************************************** *)
(* lemma ii *)
(* ********************************************************************** *)
lemma lemma_ii: "[| succ(m) \<in> NN(y); y*y \<subseteq> y; m \<in> nat; m\<noteq>0 |] ==> m \<in> NN(y)"
apply (unfold NN_def)
apply (elim CollectE exE conjE)
apply (rule quant_domain_uu_lepoll_m [THEN cases, THEN disjE], assumption)
(* case 1 *)
apply (simp add: lesspoll_succ_iff)
apply (rule_tac x = "a++a" in exI)
apply (fast intro!: Ord_oadd domain_gg1 UN_gg1_eq gg1_lepoll_m)
(* case 2 *)
apply (elim oexE conjE)
apply (rule_tac A = "f`B" for B in not_emptyE, assumption)
apply (rule CollectI)
apply (erule succ_natD)
apply (rule_tac x = "a++a" in exI)
apply (rule_tac x = "gg2 (f,a,b,x) " in exI)
apply (simp add: Ord_oadd domain_gg2 UN_gg2_eq gg2_lepoll_m)
done
(* ********************************************************************** *)
(* lemma iv - p. 4: *)
(* For every set x there is a set y such that x \<union> (y * y) \<subseteq> y *)
(* ********************************************************************** *)
(* The leading \<forall>-quantifier looks odd but makes the proofs shorter
(used only in the following two lemmas) *)
lemma z_n_subset_z_succ_n:
"\<forall>n \<in> nat. rec(n, x, %k r. r \<union> r*r) \<subseteq> rec(succ(n), x, %k r. r \<union> r*r)"
by (fast intro: rec_succ [THEN ssubst])
lemma le_subsets:
"[| \<forall>n \<in> nat. f(n)<=f(succ(n)); n\<le>m; n \<in> nat; m \<in> nat |]
==> f(n)<=f(m)"
apply (erule_tac P = "n\<le>m" in rev_mp)
apply (rule_tac P = "%z. n\<le>z \<longrightarrow> f (n) \<subseteq> f (z) " in nat_induct)
apply (auto simp add: le_iff)
done
lemma le_imp_rec_subset:
"[| n\<le>m; m \<in> nat |]
==> rec(n, x, %k r. r \<union> r*r) \<subseteq> rec(m, x, %k r. r \<union> r*r)"
apply (rule z_n_subset_z_succ_n [THEN le_subsets])
apply (blast intro: lt_nat_in_nat)+
done
lemma lemma_iv: "\<exists>y. x \<union> y*y \<subseteq> y"
apply (rule_tac x = "\<Union>n \<in> nat. rec (n, x, %k r. r \<union> r*r) " in exI)
apply safe
apply (rule nat_0I [THEN UN_I], simp)
apply (rule_tac a = "succ (n \<union> na) " in UN_I)
apply (erule Un_nat_type [THEN nat_succI], assumption)
apply (auto intro: le_imp_rec_subset [THEN subsetD]
intro!: Un_upper1_le Un_upper2_le Un_nat_type
elim!: nat_into_Ord)
done
(* ********************************************************************** *)
(* Rubin & Rubin wrote, *)
(* "It follows from (ii) and mathematical induction that if y*y \<subseteq> y then *)
(* y can be well-ordered" *)
(* In fact we have to prove *)
(* * WO6 ==> NN(y) \<noteq> 0 *)
(* * reverse induction which lets us infer that 1 \<in> NN(y) *)
(* * 1 \<in> NN(y) ==> y can be well-ordered *)
(* ********************************************************************** *)
(* ********************************************************************** *)
(* WO6 ==> NN(y) \<noteq> 0 *)
(* ********************************************************************** *)
lemma WO6_imp_NN_not_empty: "WO6 ==> NN(y) \<noteq> 0"
by (unfold WO6_def NN_def, clarify, blast)
(* ********************************************************************** *)
(* 1 \<in> NN(y) ==> y can be well-ordered *)
(* ********************************************************************** *)
lemma lemma1:
"[| (\<Union>b<a. f`b)=y; x \<in> y; \<forall>b<a. f`b \<lesssim> 1; Ord(a) |] ==> \<exists>c<a. f`c = {x}"
by (fast elim!: lepoll_1_is_sing)
lemma lemma2:
"[| (\<Union>b<a. f`b)=y; x \<in> y; \<forall>b<a. f`b \<lesssim> 1; Ord(a) |]
==> f` (\<mu> i. f`i = {x}) = {x}"
apply (drule lemma1, assumption+)
apply (fast elim!: lt_Ord intro: LeastI)
done
lemma NN_imp_ex_inj: "1 \<in> NN(y) ==> \<exists>a f. Ord(a) & f \<in> inj(y, a)"
apply (unfold NN_def)
apply (elim CollectE exE conjE)
apply (rule_tac x = a in exI)
apply (rule_tac x = "\<lambda>x \<in> y. \<mu> i. f`i = {x}" in exI)
apply (rule conjI, assumption)
apply (rule_tac d = "%i. THE x. x \<in> f`i" in lam_injective)
apply (drule lemma1, assumption+)
apply (fast elim!: Least_le [THEN lt_trans1, THEN ltD] lt_Ord)
apply (rule lemma2 [THEN ssubst], assumption+, blast)
done
lemma y_well_ord: "[| y*y \<subseteq> y; 1 \<in> NN(y) |] ==> \<exists>r. well_ord(y, r)"
apply (drule NN_imp_ex_inj)
apply (fast elim!: well_ord_rvimage [OF _ well_ord_Memrel])
done
(* ********************************************************************** *)
(* reverse induction which lets us infer that 1 \<in> NN(y) *)
(* ********************************************************************** *)
lemma rev_induct_lemma [rule_format]:
"[| n \<in> nat; !!m. [| m \<in> nat; m\<noteq>0; P(succ(m)) |] ==> P(m) |]
==> n\<noteq>0 \<longrightarrow> P(n) \<longrightarrow> P(1)"
by (erule nat_induct, blast+)
lemma rev_induct:
"[| n \<in> nat; P(n); n\<noteq>0;
!!m. [| m \<in> nat; m\<noteq>0; P(succ(m)) |] ==> P(m) |]
==> P(1)"
by (rule rev_induct_lemma, blast+)
lemma NN_into_nat: "n \<in> NN(y) ==> n \<in> nat"
by (simp add: NN_def)
lemma lemma3: "[| n \<in> NN(y); y*y \<subseteq> y; n\<noteq>0 |] ==> 1 \<in> NN(y)"
apply (rule rev_induct [OF NN_into_nat], assumption+)
apply (rule lemma_ii, assumption+)
done
(* ********************************************************************** *)
(* Main theorem "WO6 ==> WO1" *)
(* ********************************************************************** *)
(* another helpful lemma *)
lemma NN_y_0: "0 \<in> NN(y) ==> y=0"
apply (unfold NN_def)
apply (fast intro!: equalityI dest!: lepoll_0_is_0 elim: subst)
done
lemma WO6_imp_WO1: "WO6 ==> WO1"
apply (unfold WO1_def)
apply (rule allI)
apply (case_tac "A=0")
apply (fast intro!: well_ord_Memrel nat_0I [THEN nat_into_Ord])
apply (rule_tac x = A in lemma_iv [elim_format])
apply (erule exE)
apply (drule WO6_imp_NN_not_empty)
apply (erule Un_subset_iff [THEN iffD1, THEN conjE])
apply (erule_tac A = "NN (y) " in not_emptyE)
apply (frule y_well_ord)
apply (fast intro!: lemma3 dest!: NN_y_0 elim!: not_emptyE)
apply (fast elim: well_ord_subset)
done
end