src/HOL/Cardinals/Order_Relation_More.thy
author blanchet
Thu, 16 Jan 2014 16:20:17 +0100
changeset 55017 2df6ad1dbd66
parent 54552 5d57cbec0f0f
child 55023 38db7814481d
permissions -rw-r--r--
adapted to move of Wfrec

(*  Title:      HOL/Cardinals/Order_Relation_More.thy
    Author:     Andrei Popescu, TU Muenchen
    Copyright   2012

Basics on order-like relations.
*)

header {* Basics on Order-Like Relations *}

theory Order_Relation_More
imports Order_Relation_More_FP Main
begin


subsection {* The upper and lower bounds operators  *}

context rel
begin

lemma aboveS_subset_above: "aboveS a \<le> above a"
by(auto simp add: aboveS_def above_def)

lemma AboveS_subset_Above: "AboveS A \<le> Above A"
by(auto simp add: AboveS_def Above_def)

lemma UnderS_disjoint: "A Int (UnderS A) = {}"
by(auto simp add: UnderS_def)

lemma aboveS_notIn: "a \<notin> aboveS a"
by(auto simp add: aboveS_def)

lemma Refl_above_in: "\<lbrakk>Refl r; a \<in> Field r\<rbrakk> \<Longrightarrow> a \<in> above a"
by(auto simp add: refl_on_def above_def)

lemma in_Above_under: "a \<in> Field r \<Longrightarrow> a \<in> Above (under a)"
by(auto simp add: Above_def under_def)

lemma in_Under_above: "a \<in> Field r \<Longrightarrow> a \<in> Under (above a)"
by(auto simp add: Under_def above_def)

lemma in_UnderS_aboveS: "a \<in> Field r \<Longrightarrow> a \<in> UnderS (aboveS a)"
by(auto simp add: UnderS_def aboveS_def)

lemma UnderS_subset_Under: "UnderS A \<le> Under A"
by(auto simp add: UnderS_def Under_def)

lemma subset_Above_Under: "B \<le> Field r \<Longrightarrow> B \<le> Above (Under B)"
by(auto simp add: Above_def Under_def)

lemma subset_Under_Above: "B \<le> Field r \<Longrightarrow> B \<le> Under (Above B)"
by(auto simp add: Under_def Above_def)

lemma subset_AboveS_UnderS: "B \<le> Field r \<Longrightarrow> B \<le> AboveS (UnderS B)"
by(auto simp add: AboveS_def UnderS_def)

lemma subset_UnderS_AboveS: "B \<le> Field r \<Longrightarrow> B \<le> UnderS (AboveS B)"
by(auto simp add: UnderS_def AboveS_def)

lemma Under_Above_Galois:
"\<lbrakk>B \<le> Field r; C \<le> Field r\<rbrakk> \<Longrightarrow> (B \<le> Above C) = (C \<le> Under B)"
by(unfold Above_def Under_def, blast)

lemma UnderS_AboveS_Galois:
"\<lbrakk>B \<le> Field r; C \<le> Field r\<rbrakk> \<Longrightarrow> (B \<le> AboveS C) = (C \<le> UnderS B)"
by(unfold AboveS_def UnderS_def, blast)

lemma Refl_above_aboveS:
assumes REFL: "Refl r" and IN: "a \<in> Field r"
shows "above a = aboveS a \<union> {a}"
proof(unfold above_def aboveS_def, auto)
  show "(a,a) \<in> r" using REFL IN refl_on_def[of _ r] by blast
qed

lemma Linear_order_under_aboveS_Field:
assumes LIN: "Linear_order r" and IN: "a \<in> Field r"
shows "Field r = under a \<union> aboveS a"
proof(unfold under_def aboveS_def, auto)
  assume "a \<in> Field r" "(a, a) \<notin> r"
  with LIN IN order_on_defs[of _ r] refl_on_def[of _ r]
  show False by auto
next
  fix b assume "b \<in> Field r" "(b, a) \<notin> r"
  with LIN IN order_on_defs[of "Field r" r] total_on_def[of "Field r" r]
  have "(a,b) \<in> r \<or> a = b" by blast
  thus "(a,b) \<in> r"
  using LIN IN order_on_defs[of _ r] refl_on_def[of _ r] by auto
next
  fix b assume "(b, a) \<in> r"
  thus "b \<in> Field r"
  using LIN order_on_defs[of _ r] refl_on_def[of _ r] by blast
next
  fix b assume "b \<noteq> a" "(a, b) \<in> r"
  thus "b \<in> Field r"
  using LIN order_on_defs[of "Field r" r] refl_on_def[of "Field r" r] by blast
qed

lemma Linear_order_underS_above_Field:
assumes LIN: "Linear_order r" and IN: "a \<in> Field r"
shows "Field r = underS a \<union> above a"
proof(unfold underS_def above_def, auto)
  assume "a \<in> Field r" "(a, a) \<notin> r"
  with LIN IN order_on_defs[of _ r] refl_on_def[of _ r]
  show False by metis
next
  fix b assume "b \<in> Field r" "(a, b) \<notin> r"
  with LIN IN order_on_defs[of "Field r" r] total_on_def[of "Field r" r]
  have "(b,a) \<in> r \<or> b = a" by blast
  thus "(b,a) \<in> r"
  using LIN IN order_on_defs[of _ r] refl_on_def[of _ r] by auto
next
  fix b assume "b \<noteq> a" "(b, a) \<in> r"
  thus "b \<in> Field r"
  using LIN order_on_defs[of _ r] refl_on_def[of _ r] by blast
next
  fix b assume "(a, b) \<in> r"
  thus "b \<in> Field r"
  using LIN order_on_defs[of "Field r" r] refl_on_def[of "Field r" r] by blast
qed

lemma under_empty: "a \<notin> Field r \<Longrightarrow> under a = {}"
unfolding Field_def under_def by auto

lemma Under_Field: "Under A \<le> Field r"
by(unfold Under_def Field_def, auto)

lemma UnderS_Field: "UnderS A \<le> Field r"
by(unfold UnderS_def Field_def, auto)

lemma above_Field: "above a \<le> Field r"
by(unfold above_def Field_def, auto)

lemma aboveS_Field: "aboveS a \<le> Field r"
by(unfold aboveS_def Field_def, auto)

lemma Above_Field: "Above A \<le> Field r"
by(unfold Above_def Field_def, auto)

lemma Refl_under_Under:
assumes REFL: "Refl r" and NE: "A \<noteq> {}"
shows "Under A = (\<Inter> a \<in> A. under a)"
proof
  show "Under A \<subseteq> (\<Inter> a \<in> A. under a)"
  by(unfold Under_def under_def, auto)
next
  show "(\<Inter> a \<in> A. under a) \<subseteq> Under A"
  proof(auto)
    fix x
    assume *: "\<forall>xa \<in> A. x \<in> under xa"
    hence "\<forall>xa \<in> A. (x,xa) \<in> r"
    by (simp add: under_def)
    moreover
    {from NE obtain a where "a \<in> A" by blast
     with * have "x \<in> under a" by simp
     hence "x \<in> Field r"
     using under_Field[of a] by auto
    }
    ultimately show "x \<in> Under A"
    unfolding Under_def by auto
  qed
qed

lemma Refl_underS_UnderS:
assumes REFL: "Refl r" and NE: "A \<noteq> {}"
shows "UnderS A = (\<Inter> a \<in> A. underS a)"
proof
  show "UnderS A \<subseteq> (\<Inter> a \<in> A. underS a)"
  by(unfold UnderS_def underS_def, auto)
next
  show "(\<Inter> a \<in> A. underS a) \<subseteq> UnderS A"
  proof(auto)
    fix x
    assume *: "\<forall>xa \<in> A. x \<in> underS xa"
    hence "\<forall>xa \<in> A. x \<noteq> xa \<and> (x,xa) \<in> r"
    by (auto simp add: underS_def)
    moreover
    {from NE obtain a where "a \<in> A" by blast
     with * have "x \<in> underS a" by simp
     hence "x \<in> Field r"
     using underS_Field[of a] by auto
    }
    ultimately show "x \<in> UnderS A"
    unfolding UnderS_def by auto
  qed
qed

lemma Refl_above_Above:
assumes REFL: "Refl r" and NE: "A \<noteq> {}"
shows "Above A = (\<Inter> a \<in> A. above a)"
proof
  show "Above A \<subseteq> (\<Inter> a \<in> A. above a)"
  by(unfold Above_def above_def, auto)
next
  show "(\<Inter> a \<in> A. above a) \<subseteq> Above A"
  proof(auto)
    fix x
    assume *: "\<forall>xa \<in> A. x \<in> above xa"
    hence "\<forall>xa \<in> A. (xa,x) \<in> r"
    by (simp add: above_def)
    moreover
    {from NE obtain a where "a \<in> A" by blast
     with * have "x \<in> above a" by simp
     hence "x \<in> Field r"
     using above_Field[of a] by auto
    }
    ultimately show "x \<in> Above A"
    unfolding Above_def by auto
  qed
qed

lemma Refl_aboveS_AboveS:
assumes REFL: "Refl r" and NE: "A \<noteq> {}"
shows "AboveS A = (\<Inter> a \<in> A. aboveS a)"
proof
  show "AboveS A \<subseteq> (\<Inter> a \<in> A. aboveS a)"
  by(unfold AboveS_def aboveS_def, auto)
next
  show "(\<Inter> a \<in> A. aboveS a) \<subseteq> AboveS A"
  proof(auto)
    fix x
    assume *: "\<forall>xa \<in> A. x \<in> aboveS xa"
    hence "\<forall>xa \<in> A. xa \<noteq> x \<and> (xa,x) \<in> r"
    by (auto simp add: aboveS_def)
    moreover
    {from NE obtain a where "a \<in> A" by blast
     with * have "x \<in> aboveS a" by simp
     hence "x \<in> Field r"
     using aboveS_Field[of a] by auto
    }
    ultimately show "x \<in> AboveS A"
    unfolding AboveS_def by auto
  qed
qed

lemma under_Under_singl: "under a = Under {a}"
by(unfold Under_def under_def, auto simp add: Field_def)

lemma underS_UnderS_singl: "underS a = UnderS {a}"
by(unfold UnderS_def underS_def, auto simp add: Field_def)

lemma above_Above_singl: "above a = Above {a}"
by(unfold Above_def above_def, auto simp add: Field_def)

lemma aboveS_AboveS_singl: "aboveS a = AboveS {a}"
by(unfold AboveS_def aboveS_def, auto simp add: Field_def)

lemma Under_decr: "A \<le> B \<Longrightarrow> Under B \<le> Under A"
by(unfold Under_def, auto)

lemma UnderS_decr: "A \<le> B \<Longrightarrow> UnderS B \<le> UnderS A"
by(unfold UnderS_def, auto)

lemma Above_decr: "A \<le> B \<Longrightarrow> Above B \<le> Above A"
by(unfold Above_def, auto)

lemma AboveS_decr: "A \<le> B \<Longrightarrow> AboveS B \<le> AboveS A"
by(unfold AboveS_def, auto)

lemma under_incl_iff:
assumes TRANS: "trans r" and REFL: "Refl r" and IN: "a \<in> Field r"
shows "(under a \<le> under b) = ((a,b) \<in> r)"
proof
  assume "(a,b) \<in> r"
  thus "under a \<le> under b" using TRANS
  by (auto simp add: under_incr)
next
  assume "under a \<le> under b"
  moreover
  have "a \<in> under a" using REFL IN
  by (auto simp add: Refl_under_in)
  ultimately show "(a,b) \<in> r"
  by (auto simp add: under_def)
qed

lemma above_decr:
assumes TRANS: "trans r" and REL: "(a,b) \<in> r"
shows "above b \<le> above a"
proof(unfold above_def, auto)
  fix x assume "(b,x) \<in> r"
  with REL TRANS trans_def[of r]
  show "(a,x) \<in> r" by blast
qed

lemma aboveS_decr:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        REL: "(a,b) \<in> r"
shows "aboveS b \<le> aboveS a"
proof(unfold aboveS_def, auto)
  assume *: "a \<noteq> b" and **: "(b,a) \<in> r"
  with ANTISYM antisym_def[of r] REL
  show False by auto
next
  fix x assume "x \<noteq> b" "(b,x) \<in> r"
  with REL TRANS trans_def[of r]
  show "(a,x) \<in> r" by blast
qed

lemma under_trans:
assumes TRANS: "trans r" and
        IN1: "a \<in> under b" and IN2: "b \<in> under c"
shows "a \<in> under c"
proof-
  have "(a,b) \<in> r \<and> (b,c) \<in> r"
  using IN1 IN2 under_def by auto
  hence "(a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  thus ?thesis unfolding under_def by simp
qed

lemma under_underS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> under b" and IN2: "b \<in> underS c"
shows "a \<in> underS c"
proof-
  have 0: "(a,b) \<in> r \<and> (b,c) \<in> r"
  using IN1 IN2 under_def underS_def by auto
  hence 1: "(a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  have 2: "b \<noteq> c" using IN2 underS_def by auto
  have 3: "a \<noteq> c"
  proof
    assume "a = c" with 0 2 ANTISYM antisym_def[of r]
    show False by auto
  qed
  from 1 3 show ?thesis unfolding underS_def by simp
qed

lemma underS_under_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> underS b" and IN2: "b \<in> under c"
shows "a \<in> underS c"
proof-
  have 0: "(a,b) \<in> r \<and> (b,c) \<in> r"
  using IN1 IN2 under_def underS_def by auto
  hence 1: "(a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  have 2: "a \<noteq> b" using IN1 underS_def by auto
  have 3: "a \<noteq> c"
  proof
    assume "a = c" with 0 2 ANTISYM antisym_def[of r]
    show False by auto
  qed
  from 1 3 show ?thesis unfolding underS_def by simp
qed

lemma underS_underS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> underS b" and IN2: "b \<in> underS c"
shows "a \<in> underS c"
proof-
  have "a \<in> under b"
  using IN1 underS_subset_under by auto
  with assms under_underS_trans show ?thesis by auto
qed

lemma above_trans:
assumes TRANS: "trans r" and
        IN1: "b \<in> above a" and IN2: "c \<in> above b"
shows "c \<in> above a"
proof-
  have "(a,b) \<in> r \<and> (b,c) \<in> r"
  using IN1 IN2 above_def by auto
  hence "(a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  thus ?thesis unfolding above_def by simp
qed

lemma above_aboveS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "b \<in> above a" and IN2: "c \<in> aboveS b"
shows "c \<in> aboveS a"
proof-
  have 0: "(a,b) \<in> r \<and> (b,c) \<in> r"
  using IN1 IN2 above_def aboveS_def by auto
  hence 1: "(a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  have 2: "b \<noteq> c" using IN2 aboveS_def by auto
  have 3: "a \<noteq> c"
  proof
    assume "a = c" with 0 2 ANTISYM antisym_def[of r]
    show False by auto
  qed
  from 1 3 show ?thesis unfolding aboveS_def by simp
qed

lemma aboveS_above_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "b \<in> aboveS a" and IN2: "c \<in> above b"
shows "c \<in> aboveS a"
proof-
  have 0: "(a,b) \<in> r \<and> (b,c) \<in> r"
  using IN1 IN2 above_def aboveS_def by auto
  hence 1: "(a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  have 2: "a \<noteq> b" using IN1 aboveS_def by auto
  have 3: "a \<noteq> c"
  proof
    assume "a = c" with 0 2 ANTISYM antisym_def[of r]
    show False by auto
  qed
  from 1 3 show ?thesis unfolding aboveS_def by simp
qed

lemma aboveS_aboveS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "b \<in> aboveS a" and IN2: "c \<in> aboveS b"
shows "c \<in> aboveS a"
proof-
  have "b \<in> above a"
  using IN1 aboveS_subset_above by auto
  with assms above_aboveS_trans show ?thesis by auto
qed

lemma under_Under_trans:
assumes TRANS: "trans r" and
        IN1: "a \<in> under b" and IN2: "b \<in> Under C"
shows "a \<in> Under C"
proof-
  have "(a,b) \<in> r \<and> (\<forall>c \<in> C. (b,c) \<in> r)"
  using IN1 IN2 under_def Under_def by blast
  hence "\<forall>c \<in> C. (a,c) \<in> r"
  using TRANS trans_def[of r] by blast
  moreover
  have "a \<in> Field r" using IN1 unfolding Field_def under_def by blast
  ultimately
  show ?thesis unfolding Under_def by blast
qed

lemma underS_Under_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> underS b" and IN2: "b \<in> Under C"
shows "a \<in> UnderS C"
proof-
  from IN1 have "a \<in> under b"
  using underS_subset_under[of b] by blast
  with assms under_Under_trans
  have "a \<in> Under C" by auto
  (*  *)
  moreover
  have "a \<notin> C"
  proof
    assume *: "a \<in> C"
    have 1: "b \<noteq> a \<and> (a,b) \<in> r"
    using IN1 underS_def[of b] by auto
    have "\<forall>c \<in> C. (b,c) \<in> r"
    using IN2 Under_def[of C] by auto
    with * have "(b,a) \<in> r" by simp
    with 1 ANTISYM antisym_def[of r]
    show False by blast
  qed
  (*  *)
  ultimately
  show ?thesis unfolding UnderS_def
  using Under_def by auto
qed

lemma underS_UnderS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> underS b" and IN2: "b \<in> UnderS C"
shows "a \<in> UnderS C"
proof-
  from IN2 have "b \<in> Under C"
  using UnderS_subset_Under[of C] by blast
  with underS_Under_trans assms
  show ?thesis by auto
qed

lemma above_Above_trans:
assumes TRANS: "trans r" and
        IN1: "a \<in> above b" and IN2: "b \<in> Above C"
shows "a \<in> Above C"
proof-
  have "(b,a) \<in> r \<and> (\<forall>c \<in> C. (c,b) \<in> r)"
  using IN1 IN2 above_def Above_def by auto
  hence "\<forall>c \<in> C. (c,a) \<in> r"
  using TRANS trans_def[of r] by blast
  moreover
  have "a \<in> Field r" using IN1 Field_def above_def by force
  ultimately
  show ?thesis unfolding Above_def by auto
qed

lemma aboveS_Above_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> aboveS b" and IN2: "b \<in> Above C"
shows "a \<in> AboveS C"
proof-
  from IN1 have "a \<in> above b"
  using aboveS_subset_above[of b] by blast
  with assms above_Above_trans
  have "a \<in> Above C" by auto
  (*  *)
  moreover
  have "a \<notin> C"
  proof
    assume *: "a \<in> C"
    have 1: "b \<noteq> a \<and> (b,a) \<in> r"
    using IN1 aboveS_def[of b] by auto
    have "\<forall>c \<in> C. (c,b) \<in> r"
    using IN2 Above_def[of C] by auto
    with * have "(a,b) \<in> r" by simp
    with 1 ANTISYM antisym_def[of r]
    show False by blast
  qed
  (*  *)
  ultimately
  show ?thesis unfolding AboveS_def
  using Above_def by auto
qed

lemma above_AboveS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> above b" and IN2: "b \<in> AboveS C"
shows "a \<in> AboveS C"
proof-
  from IN2 have "b \<in> Above C"
  using AboveS_subset_Above[of C] by blast
  with assms above_Above_trans
  have "a \<in> Above C" by auto
  (*  *)
  moreover
  have "a \<notin> C"
  proof
    assume *: "a \<in> C"
    have 1: "(b,a) \<in> r"
    using IN1 above_def[of b] by auto
    have "\<forall>c \<in> C. b \<noteq> c \<and> (c,b) \<in> r"
    using IN2 AboveS_def[of C] by auto
    with * have "b \<noteq> a \<and> (a,b) \<in> r" by simp
    with 1 ANTISYM antisym_def[of r]
    show False by blast
  qed
  (*  *)
  ultimately
  show ?thesis unfolding AboveS_def
  using Above_def by auto
qed

lemma aboveS_AboveS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> aboveS b" and IN2: "b \<in> AboveS C"
shows "a \<in> AboveS C"
proof-
  from IN2 have "b \<in> Above C"
  using AboveS_subset_Above[of C] by blast
  with aboveS_Above_trans assms
  show ?thesis by auto
qed

lemma under_UnderS_trans:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
        IN1: "a \<in> under b" and IN2: "b \<in> UnderS C"
shows "a \<in> UnderS C"
proof-
  from IN2 have "b \<in> Under C"
  using UnderS_subset_Under[of C] by blast
  with assms under_Under_trans
  have "a \<in> Under C" by blast
  (*  *)
  moreover
  have "a \<notin> C"
  proof
    assume *: "a \<in> C"
    have 1: "(a,b) \<in> r"
    using IN1 under_def[of b] by auto
    have "\<forall>c \<in> C. b \<noteq> c \<and> (b,c) \<in> r"
    using IN2 UnderS_def[of C] by blast
    with * have "b \<noteq> a \<and> (b,a) \<in> r" by blast
    with 1 ANTISYM antisym_def[of r]
    show False by blast
  qed
  (*  *)
  ultimately
  show ?thesis unfolding UnderS_def Under_def by fast
qed

end  (* context rel *)


subsection {* Properties depending on more than one relation  *}

abbreviation "under \<equiv> rel.under"
abbreviation "underS \<equiv> rel.underS"
abbreviation "Under \<equiv> rel.Under"
abbreviation "UnderS \<equiv> rel.UnderS"
abbreviation "above \<equiv> rel.above"
abbreviation "aboveS \<equiv> rel.aboveS"
abbreviation "Above \<equiv> rel.Above"
abbreviation "AboveS \<equiv> rel.AboveS"

lemma under_incr2:
"r \<le> r' \<Longrightarrow> under r a \<le> under r' a"
unfolding rel.under_def by blast

lemma underS_incr2:
"r \<le> r' \<Longrightarrow> underS r a \<le> underS r' a"
unfolding rel.underS_def by blast

lemma Under_incr:
"r \<le> r' \<Longrightarrow> Under r A \<le> Under r A"
unfolding rel.Under_def by blast

lemma UnderS_incr:
"r \<le> r' \<Longrightarrow> UnderS r A \<le> UnderS r A"
unfolding rel.UnderS_def by blast

lemma Under_incr_decr:
"\<lbrakk>r \<le> r'; A' \<le> A\<rbrakk>  \<Longrightarrow> Under r A \<le> Under r A'"
unfolding rel.Under_def by blast

lemma UnderS_incr_decr:
"\<lbrakk>r \<le> r'; A' \<le> A\<rbrakk>  \<Longrightarrow> UnderS r A \<le> UnderS r A'"
unfolding rel.UnderS_def by blast

lemma above_incr2:
"r \<le> r' \<Longrightarrow> above r a \<le> above r' a"
unfolding rel.above_def by blast

lemma aboveS_incr2:
"r \<le> r' \<Longrightarrow> aboveS r a \<le> aboveS r' a"
unfolding rel.aboveS_def by blast

lemma Above_incr:
"r \<le> r' \<Longrightarrow> Above r A \<le> Above r A"
unfolding rel.Above_def by blast

lemma AboveS_incr:
"r \<le> r' \<Longrightarrow> AboveS r A \<le> AboveS r A"
unfolding rel.AboveS_def by blast

lemma Above_incr_decr:
"\<lbrakk>r \<le> r'; A' \<le> A\<rbrakk>  \<Longrightarrow> Above r A \<le> Above r A'"
unfolding rel.Above_def by blast

lemma AboveS_incr_decr:
"\<lbrakk>r \<le> r'; A' \<le> A\<rbrakk>  \<Longrightarrow> AboveS r A \<le> AboveS r A'"
unfolding rel.AboveS_def by blast

end