(* Title: ZF/simpdata
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Rewriting for ZF set theory: specialized extraction of rewrites from theorems
*)
(*** New version of mk_rew_rules ***)
(*Should False yield False<->True, or should it solve goals some other way?*)
(*Analyse a theorem to atomic rewrite rules*)
fun atomize (conn_pairs, mem_pairs) th =
let fun tryrules pairs t =
case head_of t of
Const(a,_) =>
(case AList.lookup (op =) pairs a of
SOME rls => List.concat (map (atomize (conn_pairs, mem_pairs))
([th] RL rls))
| NONE => [th])
| _ => [th]
in case concl_of th of
Const("Trueprop",_) $ P =>
(case P of
Const("op :",_) $ a $ b => tryrules mem_pairs b
| Const("True",_) => []
| Const("False",_) => []
| A => tryrules conn_pairs A)
| _ => [th]
end;
(*Analyse a rigid formula*)
val ZF_conn_pairs =
[("Ball", [bspec]),
("All", [spec]),
("op -->", [mp]),
("op &", [conjunct1,conjunct2])];
(*Analyse a:b, where b is rigid*)
val ZF_mem_pairs =
[("Collect", [CollectD1,CollectD2]),
("op -", [DiffD1,DiffD2]),
("op Int", [IntD1,IntD2])];
val ZF_atomize = atomize (ZF_conn_pairs, ZF_mem_pairs);
change_simpset (fn ss =>
ss setmksimps (map mk_eq o ZF_atomize o gen_all)
addcongs [if_weak_cong]);
local
val unfold_bex_tac = unfold_tac [Bex_def];
fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac;
val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
val unfold_ball_tac = unfold_tac [Ball_def];
fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac;
val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
in
val defBEX_regroup = Simplifier.simproc (the_context ())
"defined BEX" ["EX x:A. P(x) & Q(x)"] rearrange_bex;
val defBALL_regroup = Simplifier.simproc (the_context ())
"defined BALL" ["ALL x:A. P(x) --> Q(x)"] rearrange_ball;
end;
Addsimprocs [defBALL_regroup, defBEX_regroup];
val ZF_ss = simpset();