(* Title : MacLaurin.thy
Author : Jacques D. Fleuriot
Copyright : 2001 University of Edinburgh
Description : MacLaurin series
Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)
theory MacLaurin = Log:
lemma sumr_offset: "sumr 0 n (%m. f (m+k)) = sumr 0 (n+k) f - sumr 0 k f"
by (induct_tac "n", auto)
lemma sumr_offset2: "\<forall>f. sumr 0 n (%m. f (m+k)) = sumr 0 (n+k) f - sumr 0 k f"
by (induct_tac "n", auto)
lemma sumr_offset3: "sumr 0 (n+k) f = sumr 0 n (%m. f (m+k)) + sumr 0 k f"
by (simp add: sumr_offset)
lemma sumr_offset4: "\<forall>n f. sumr 0 (n+k) f = sumr 0 n (%m. f (m+k)) + sumr 0 k f"
by (simp add: sumr_offset)
lemma sumr_from_1_from_0: "0 < n ==>
sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else
((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) =
sumr 0 (Suc n) (%n. (if even(n) then 0 else
((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)"
by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto)
subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
text{*This is a very long, messy proof even now that it's been broken down
into lemmas.*}
lemma Maclaurin_lemma:
"0 < h ==>
\<exists>B. f h = sumr 0 n (%m. (j m / real (fact m)) * (h^m)) +
(B * ((h^n) / real(fact n)))"
by (rule_tac x = "(f h - sumr 0 n (%m. (j m / real (fact m)) * h^m)) *
real(fact n) / (h^n)"
in exI, auto)
lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
by arith
text{*A crude tactic to differentiate by proof.*}
ML
{*
exception DERIV_name;
fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f
| get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f
| get_fun_name _ = raise DERIV_name;
val deriv_rulesI = [DERIV_Id,DERIV_const,DERIV_cos,DERIV_cmult,
DERIV_sin, DERIV_exp, DERIV_inverse,DERIV_pow,
DERIV_add, DERIV_diff, DERIV_mult, DERIV_minus,
DERIV_inverse_fun,DERIV_quotient,DERIV_fun_pow,
DERIV_fun_exp,DERIV_fun_sin,DERIV_fun_cos,
DERIV_Id,DERIV_const,DERIV_cos];
val deriv_tac =
SUBGOAL (fn (prem,i) =>
(resolve_tac deriv_rulesI i) ORELSE
((rtac (read_instantiate [("f",get_fun_name prem)]
DERIV_chain2) i) handle DERIV_name => no_tac));;
val DERIV_tac = ALLGOALS(fn i => REPEAT(deriv_tac i));
*}
lemma Maclaurin_lemma2:
"[| \<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t;
n = Suc k;
difg =
(\<lambda>m t. diff m t -
((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +
B * (t ^ (n - m) / real (fact (n - m)))))|] ==>
\<forall>m t. m < n & 0 \<le> t & t \<le> h -->
DERIV (difg m) t :> difg (Suc m) t"
apply clarify
apply (rule DERIV_diff)
apply (simp (no_asm_simp))
apply (tactic DERIV_tac)
apply (tactic DERIV_tac)
apply (rule_tac [2] lemma_DERIV_subst)
apply (rule_tac [2] DERIV_quotient)
apply (rule_tac [3] DERIV_const)
apply (rule_tac [2] DERIV_pow)
prefer 3 apply (simp add: fact_diff_Suc)
prefer 2 apply simp
apply (frule_tac m = m in less_add_one, clarify)
apply (simp del: sumr_Suc)
apply (insert sumr_offset4 [of 1])
apply (simp del: sumr_Suc fact_Suc realpow_Suc)
apply (rule lemma_DERIV_subst)
apply (rule DERIV_add)
apply (rule_tac [2] DERIV_const)
apply (rule DERIV_sumr, clarify)
prefer 2 apply simp
apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc realpow_Suc)
apply (rule DERIV_cmult)
apply (rule lemma_DERIV_subst)
apply (best intro: DERIV_chain2 intro!: DERIV_intros)
apply (subst fact_Suc)
apply (subst real_of_nat_mult)
apply (simp add: inverse_mult_distrib mult_ac)
done
lemma Maclaurin_lemma3:
"[|\<forall>k t. k < Suc m \<and> 0\<le>t & t\<le>h \<longrightarrow> DERIV (difg k) t :> difg (Suc k) t;
\<forall>k<Suc m. difg k 0 = 0; DERIV (difg n) t :> 0; n < m; 0 < t;
t < h|]
==> \<exists>ta. 0 < ta & ta < t & DERIV (difg (Suc n)) ta :> 0"
apply (rule Rolle, assumption, simp)
apply (drule_tac x = n and P="%k. k<Suc m --> difg k 0 = 0" in spec)
apply (rule DERIV_unique)
prefer 2 apply assumption
apply force
apply (subgoal_tac "\<forall>ta. 0 \<le> ta & ta \<le> t --> (difg (Suc n)) differentiable ta")
apply (simp add: differentiable_def)
apply (blast dest!: DERIV_isCont)
apply (simp add: differentiable_def, clarify)
apply (rule_tac x = "difg (Suc (Suc n)) ta" in exI)
apply force
apply (simp add: differentiable_def, clarify)
apply (rule_tac x = "difg (Suc (Suc n)) x" in exI)
apply force
done
lemma Maclaurin:
"[| 0 < h; 0 < n; diff 0 = f;
\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
==> \<exists>t. 0 < t &
t < h &
f h =
sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) +
(diff n t / real (fact n)) * h ^ n"
apply (case_tac "n = 0", force)
apply (drule not0_implies_Suc)
apply (erule exE)
apply (frule_tac f=f and n=n and j="%m. diff m 0" in Maclaurin_lemma)
apply (erule exE)
apply (subgoal_tac "\<exists>g.
g = (%t. f t - (sumr 0 n (%m. (diff m 0 / real(fact m)) * t^m) + (B * (t^n / real(fact n)))))")
prefer 2 apply blast
apply (erule exE)
apply (subgoal_tac "g 0 = 0 & g h =0")
prefer 2
apply (simp del: sumr_Suc)
apply (cut_tac n = m and k = 1 in sumr_offset2)
apply (simp add: eq_diff_eq' del: sumr_Suc)
apply (subgoal_tac "\<exists>difg. difg = (%m t. diff m t - (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) + (B * ((t ^ (n - m)) / real (fact (n - m))))))")
prefer 2 apply blast
apply (erule exE)
apply (subgoal_tac "difg 0 = g")
prefer 2 apply simp
apply (frule Maclaurin_lemma2, assumption+)
apply (subgoal_tac "\<forall>ma. ma < n --> (\<exists>t. 0 < t & t < h & difg (Suc ma) t = 0) ")
apply (drule_tac x = m and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec)
apply (erule impE)
apply (simp (no_asm_simp))
apply (erule exE)
apply (rule_tac x = t in exI)
apply (simp del: realpow_Suc fact_Suc)
apply (subgoal_tac "\<forall>m. m < n --> difg m 0 = 0")
prefer 2
apply clarify
apply simp
apply (frule_tac m = ma in less_add_one, clarify)
apply (simp del: sumr_Suc)
apply (insert sumr_offset4 [of 1])
apply (simp del: sumr_Suc fact_Suc realpow_Suc)
apply (subgoal_tac "\<forall>m. m < n --> (\<exists>t. 0 < t & t < h & DERIV (difg m) t :> 0) ")
apply (rule allI, rule impI)
apply (drule_tac x = ma and P="%m. m<n --> (\<exists>t. ?QQ m t)" in spec)
apply (erule impE, assumption)
apply (erule exE)
apply (rule_tac x = t in exI)
(* do some tidying up *)
apply (erule_tac [!] V= "difg = (%m t. diff m t - (sumr 0 (n - m) (%p. diff (m + p) 0 / real (fact p) * t ^ p) + B * (t ^ (n - m) / real (fact (n - m)))))"
in thin_rl)
apply (erule_tac [!] V="g = (%t. f t - (sumr 0 n (%m. diff m 0 / real (fact m) * t ^ m) + B * (t ^ n / real (fact n))))"
in thin_rl)
apply (erule_tac [!] V="f h = sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + B * (h ^ n / real (fact n))"
in thin_rl)
(* back to business *)
apply (simp (no_asm_simp))
apply (rule DERIV_unique)
prefer 2 apply blast
apply force
apply (rule allI, induct_tac "ma")
apply (rule impI, rule Rolle, assumption, simp, simp)
apply (subgoal_tac "\<forall>t. 0 \<le> t & t \<le> h --> g differentiable t")
apply (simp add: differentiable_def)
apply (blast dest: DERIV_isCont)
apply (simp add: differentiable_def, clarify)
apply (rule_tac x = "difg (Suc 0) t" in exI)
apply force
apply (simp add: differentiable_def, clarify)
apply (rule_tac x = "difg (Suc 0) x" in exI)
apply force
apply safe
apply force
apply (frule Maclaurin_lemma3, assumption+, safe)
apply (rule_tac x = ta in exI, force)
done
lemma Maclaurin_objl:
"0 < h & 0 < n & diff 0 = f &
(\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
--> (\<exists>t. 0 < t &
t < h &
f h =
sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
diff n t / real (fact n) * h ^ n)"
by (blast intro: Maclaurin)
lemma Maclaurin2:
"[| 0 < h; diff 0 = f;
\<forall>m t.
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
==> \<exists>t. 0 < t &
t \<le> h &
f h =
sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
diff n t / real (fact n) * h ^ n"
apply (case_tac "n", auto)
apply (drule Maclaurin, auto)
done
lemma Maclaurin2_objl:
"0 < h & diff 0 = f &
(\<forall>m t.
m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
--> (\<exists>t. 0 < t &
t \<le> h &
f h =
sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
diff n t / real (fact n) * h ^ n)"
by (blast intro: Maclaurin2)
lemma Maclaurin_minus:
"[| h < 0; 0 < n; diff 0 = f;
\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |]
==> \<exists>t. h < t &
t < 0 &
f h =
sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
diff n t / real (fact n) * h ^ n"
apply (cut_tac f = "%x. f (-x)"
and diff = "%n x. ((- 1) ^ n) * diff n (-x)"
and h = "-h" and n = n in Maclaurin_objl)
apply simp
apply safe
apply (subst minus_mult_right)
apply (rule DERIV_cmult)
apply (rule lemma_DERIV_subst)
apply (rule DERIV_chain2 [where g=uminus])
apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_Id)
prefer 2 apply force
apply force
apply (rule_tac x = "-t" in exI, auto)
apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) =
(\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))")
apply (rule_tac [2] sumr_fun_eq)
apply (auto simp add: divide_inverse power_mult_distrib [symmetric])
done
lemma Maclaurin_minus_objl:
"(h < 0 & 0 < n & diff 0 = f &
(\<forall>m t.
m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t))
--> (\<exists>t. h < t &
t < 0 &
f h =
sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) +
diff n t / real (fact n) * h ^ n)"
by (blast intro: Maclaurin_minus)
subsection{*More Convenient "Bidirectional" Version.*}
(* not good for PVS sin_approx, cos_approx *)
lemma Maclaurin_bi_le_lemma [rule_format]:
"0 < n \<longrightarrow>
diff 0 0 =
(\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +
diff n 0 * 0 ^ n / real (fact n)"
by (induct_tac "n", auto)
lemma Maclaurin_bi_le:
"[| diff 0 = f;
\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |]
==> \<exists>t. abs t \<le> abs x &
f x =
sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) +
diff n t / real (fact n) * x ^ n"
apply (case_tac "n = 0", force)
apply (case_tac "x = 0")
apply (rule_tac x = 0 in exI)
apply (force simp add: Maclaurin_bi_le_lemma)
apply (cut_tac x = x and y = 0 in linorder_less_linear, auto)
txt{*Case 1, where @{term "x < 0"}*}
apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe)
apply (simp add: abs_if)
apply (rule_tac x = t in exI)
apply (simp add: abs_if)
txt{*Case 2, where @{term "0 < x"}*}
apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe)
apply (simp add: abs_if)
apply (rule_tac x = t in exI)
apply (simp add: abs_if)
done
lemma Maclaurin_all_lt:
"[| diff 0 = f;
\<forall>m x. DERIV (diff m) x :> diff(Suc m) x;
x ~= 0; 0 < n
|] ==> \<exists>t. 0 < abs t & abs t < abs x &
f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
(diff n t / real (fact n)) * x ^ n"
apply (rule_tac x = x and y = 0 in linorder_cases)
prefer 2 apply blast
apply (drule_tac [2] diff=diff in Maclaurin)
apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe)
apply (rule_tac [!] x = t in exI, auto, arith+)
done
lemma Maclaurin_all_lt_objl:
"diff 0 = f &
(\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) &
x ~= 0 & 0 < n
--> (\<exists>t. 0 < abs t & abs t < abs x &
f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
(diff n t / real (fact n)) * x ^ n)"
by (blast intro: Maclaurin_all_lt)
lemma Maclaurin_zero [rule_format]:
"x = (0::real)
==> 0 < n -->
sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) =
diff 0 0"
by (induct n, auto)
lemma Maclaurin_all_le: "[| diff 0 = f;
\<forall>m x. DERIV (diff m) x :> diff (Suc m) x
|] ==> \<exists>t. abs t \<le> abs x &
f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
(diff n t / real (fact n)) * x ^ n"
apply (insert linorder_le_less_linear [of n 0])
apply (erule disjE, force)
apply (case_tac "x = 0")
apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption)
apply (drule gr_implies_not0 [THEN not0_implies_Suc])
apply (rule_tac x = 0 in exI, force)
apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto)
apply (rule_tac x = t in exI, auto)
done
lemma Maclaurin_all_le_objl: "diff 0 = f &
(\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
--> (\<exists>t. abs t \<le> abs x &
f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) +
(diff n t / real (fact n)) * x ^ n)"
by (blast intro: Maclaurin_all_le)
subsection{*Version for Exponential Function*}
lemma Maclaurin_exp_lt: "[| x ~= 0; 0 < n |]
==> (\<exists>t. 0 < abs t &
abs t < abs x &
exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) +
(exp t / real (fact n)) * x ^ n)"
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto)
lemma Maclaurin_exp_le:
"\<exists>t. abs t \<le> abs x &
exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) +
(exp t / real (fact n)) * x ^ n"
by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto)
subsection{*Version for Sine Function*}
lemma MVT2:
"[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
==> \<exists>z. a < z & z < b & (f b - f a = (b - a) * f'(z))"
apply (drule MVT)
apply (blast intro: DERIV_isCont)
apply (force dest: order_less_imp_le simp add: differentiable_def)
apply (blast dest: DERIV_unique order_less_imp_le)
done
lemma mod_exhaust_less_4:
"m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)"
by (case_tac "m mod 4", auto, arith)
lemma Suc_Suc_mult_two_diff_two [rule_format, simp]:
"0 < n --> Suc (Suc (2 * n - 2)) = 2*n"
by (induct_tac "n", auto)
lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]:
"0 < n --> Suc (Suc (4*n - 2)) = 4*n"
by (induct_tac "n", auto)
lemma Suc_mult_two_diff_one [rule_format, simp]:
"0 < n --> Suc (2 * n - 1) = 2*n"
by (induct_tac "n", auto)
lemma Maclaurin_sin_expansion:
"\<exists>t. sin x =
(sumr 0 n (%m. (if even m then 0
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
x ^ m))
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = sin and n = n and x = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
apply safe
apply (simp (no_asm))
apply (simp (no_asm))
apply (case_tac "n", clarify, simp)
apply (drule_tac x = 0 in spec, simp, simp)
apply (rule ccontr, simp)
apply (drule_tac x = x in spec, simp)
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
(*Could sin_zero_iff help?*)
done
lemma Maclaurin_sin_expansion2:
"\<exists>t. abs t \<le> abs x &
sin x =
(sumr 0 n (%m. (if even m then 0
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
x ^ m))
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = sin and n = n and x = x
and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl)
apply safe
apply (simp (no_asm))
apply (simp (no_asm))
apply (case_tac "n", clarify, simp, simp)
apply (rule ccontr, simp)
apply (drule_tac x = x in spec, simp)
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
done
lemma Maclaurin_sin_expansion3:
"[| 0 < n; 0 < x |] ==>
\<exists>t. 0 < t & t < x &
sin x =
(sumr 0 n (%m. (if even m then 0
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
x ^ m))
+ ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl)
apply safe
apply simp
apply (simp (no_asm))
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
done
lemma Maclaurin_sin_expansion4:
"0 < x ==>
\<exists>t. 0 < t & t \<le> x &
sin x =
(sumr 0 n (%m. (if even m then 0
else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
x ^ m))
+ ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl)
apply safe
apply simp
apply (simp (no_asm))
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex simp del: fact_Suc realpow_Suc)
done
subsection{*Maclaurin Expansion for Cosine Function*}
lemma sumr_cos_zero_one [simp]:
"sumr 0 (Suc n)
(%m. (if even m
then (- 1) ^ (m div 2)/(real (fact m))
else 0) *
0 ^ m) = 1"
by (induct_tac "n", auto)
lemma Maclaurin_cos_expansion:
"\<exists>t. abs t \<le> abs x &
cos x =
(sumr 0 n (%m. (if even m
then (- 1) ^ (m div 2)/(real (fact m))
else 0) *
x ^ m))
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
apply safe
apply (simp (no_asm))
apply (simp (no_asm))
apply (case_tac "n", simp)
apply (simp del: sumr_Suc)
apply (rule ccontr, simp)
apply (drule_tac x = x in spec, simp)
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex left_distrib cos_add simp del: fact_Suc realpow_Suc)
apply (simp add: mult_commute [of _ pi])
done
lemma Maclaurin_cos_expansion2:
"[| 0 < x; 0 < n |] ==>
\<exists>t. 0 < t & t < x &
cos x =
(sumr 0 n (%m. (if even m
then (- 1) ^ (m div 2)/(real (fact m))
else 0) *
x ^ m))
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl)
apply safe
apply simp
apply (simp (no_asm))
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex left_distrib cos_add simp del: fact_Suc realpow_Suc)
apply (simp add: mult_commute [of _ pi])
done
lemma Maclaurin_minus_cos_expansion: "[| x < 0; 0 < n |] ==>
\<exists>t. x < t & t < 0 &
cos x =
(sumr 0 n (%m. (if even m
then (- 1) ^ (m div 2)/(real (fact m))
else 0) *
x ^ m))
+ ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl)
apply safe
apply simp
apply (simp (no_asm))
apply (erule ssubst)
apply (rule_tac x = t in exI, simp)
apply (rule sumr_fun_eq)
apply (auto simp add: odd_Suc_mult_two_ex)
apply (auto simp add: even_mult_two_ex left_distrib cos_add simp del: fact_Suc realpow_Suc)
apply (simp add: mult_commute [of _ pi])
done
(* ------------------------------------------------------------------------- *)
(* Version for ln(1 +/- x). Where is it?? *)
(* ------------------------------------------------------------------------- *)
lemma sin_bound_lemma:
"[|x = y; abs u \<le> (v::real) |] ==> abs ((x + u) - y) \<le> v"
by auto
lemma Maclaurin_sin_bound:
"abs(sin x - sumr 0 n (%m. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) *
x ^ m)) \<le> inverse(real (fact n)) * abs(x) ^ n"
proof -
have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y"
by (rule_tac mult_right_mono,simp_all)
note est = this[simplified]
show ?thesis
apply (cut_tac f=sin and n=n and x=x and
diff = "%n x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"
in Maclaurin_all_le_objl)
apply safe
apply simp
apply (subst mod_Suc_eq_Suc_mod)
apply (cut_tac m=m in mod_exhaust_less_4, safe, simp+)
apply (rule DERIV_minus, simp+)
apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp)
apply (erule ssubst)
apply (rule sin_bound_lemma)
apply (rule sumr_fun_eq, safe)
apply (rule_tac f = "%u. u * (x^r)" in arg_cong)
apply (subst even_even_mod_4_iff)
apply (cut_tac m=r in mod_exhaust_less_4, simp, safe)
apply (simp_all add:even_num_iff)
apply (drule lemma_even_mod_4_div_2[simplified])
apply(simp add: numeral_2_eq_2 divide_inverse)
apply (drule lemma_odd_mod_4_div_2)
apply (simp add: numeral_2_eq_2 divide_inverse)
apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
simp add: est mult_pos_le mult_ac divide_inverse
power_abs [symmetric])
done
qed
end