(* Title: HOL/Sledgehammer.thy
Author: Lawrence C Paulson
Author: Jia Meng, NICTA
Author: Fabian Immler, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
*)
header {* Sledgehammer: Isabelle--ATP Linkup *}
theory Sledgehammer
imports Plain Hilbert_Choice
uses
"Tools/polyhash.ML"
"~~/src/Tools/Metis/metis.ML"
("Tools/Sledgehammer/sledgehammer_fol_clause.ML")
("Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML")
("Tools/Sledgehammer/sledgehammer_hol_clause.ML")
("Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML")
("Tools/Sledgehammer/sledgehammer_fact_filter.ML")
("Tools/ATP_Manager/atp_manager.ML")
("Tools/ATP_Manager/atp_wrapper.ML")
("Tools/ATP_Manager/atp_minimal.ML")
("Tools/Sledgehammer/meson_tactic.ML")
("Tools/Sledgehammer/metis_tactics.ML")
begin
definition COMBI :: "'a \<Rightarrow> 'a"
where "COMBI P \<equiv> P"
definition COMBK :: "'a \<Rightarrow> 'b \<Rightarrow> 'a"
where "COMBK P Q \<equiv> P"
definition COMBB :: "('b => 'c) \<Rightarrow> ('a => 'b) \<Rightarrow> 'a \<Rightarrow> 'c"
where "COMBB P Q R \<equiv> P (Q R)"
definition COMBC :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c"
where "COMBC P Q R \<equiv> P R Q"
definition COMBS :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c"
where "COMBS P Q R \<equiv> P R (Q R)"
definition fequal :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
where "fequal X Y \<equiv> (X = Y)"
lemma fequal_imp_equal: "fequal X Y \<Longrightarrow> X = Y"
by (simp add: fequal_def)
lemma equal_imp_fequal: "X = Y \<Longrightarrow> fequal X Y"
by (simp add: fequal_def)
text{*These two represent the equivalence between Boolean equality and iff.
They can't be converted to clauses automatically, as the iff would be
expanded...*}
lemma iff_positive: "P \<or> Q \<or> P = Q"
by blast
lemma iff_negative: "\<not> P \<or> \<not> Q \<or> P = Q"
by blast
text{*Theorems for translation to combinators*}
lemma abs_S: "\<lambda>x. (f x) (g x) \<equiv> COMBS f g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBS_def)
done
lemma abs_I: "\<lambda>x. x \<equiv> COMBI"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBI_def)
done
lemma abs_K: "\<lambda>x. y \<equiv> COMBK y"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBK_def)
done
lemma abs_B: "\<lambda>x. a (g x) \<equiv> COMBB a g"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBB_def)
done
lemma abs_C: "\<lambda>x. (f x) b \<equiv> COMBC f b"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBC_def)
done
subsection {* Setup of external ATPs *}
use "Tools/Sledgehammer/sledgehammer_fol_clause.ML"
use "Tools/Sledgehammer/sledgehammer_fact_preprocessor.ML"
setup Sledgehammer_Fact_Preprocessor.setup
use "Tools/Sledgehammer/sledgehammer_hol_clause.ML"
use "Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML"
setup Sledgehammer_Proof_Reconstruct.setup
use "Tools/Sledgehammer/sledgehammer_fact_filter.ML"
use "Tools/ATP_Manager/atp_wrapper.ML"
setup ATP_Wrapper.setup
use "Tools/ATP_Manager/atp_manager.ML"
use "Tools/ATP_Manager/atp_minimal.ML"
text {* basic provers *}
setup {* ATP_Manager.add_prover ATP_Wrapper.spass *}
setup {* ATP_Manager.add_prover ATP_Wrapper.vampire *}
setup {* ATP_Manager.add_prover ATP_Wrapper.eprover *}
text {* provers with stuctured output *}
setup {* ATP_Manager.add_prover ATP_Wrapper.vampire_full *}
setup {* ATP_Manager.add_prover ATP_Wrapper.eprover_full *}
text {* on some problems better results *}
setup {* ATP_Manager.add_prover ATP_Wrapper.spass_no_tc *}
text {* remote provers via SystemOnTPTP *}
setup {* ATP_Manager.add_prover ATP_Wrapper.remote_vampire *}
setup {* ATP_Manager.add_prover ATP_Wrapper.remote_spass *}
setup {* ATP_Manager.add_prover ATP_Wrapper.remote_eprover *}
subsection {* The MESON prover *}
use "Tools/Sledgehammer/meson_tactic.ML"
setup Meson_Tactic.setup
subsection {* The Metis prover *}
use "Tools/Sledgehammer/metis_tactics.ML"
setup Metis_Tactics.setup
end