(* Title: Pure/Isar/theory_target.ML
ID: $Id$
Author: Makarius
Common theory/locale/class/instantiation/overloading targets.
*)
signature THEORY_TARGET =
sig
val peek: local_theory -> {target: string, is_locale: bool,
is_class: bool, instantiation: string list * (string * sort) list * sort,
overloading: (string * (string * typ) * bool) list}
val init: string option -> theory -> local_theory
val begin: string -> Proof.context -> local_theory
val context: xstring -> theory -> local_theory
val instantiation: string list * (string * sort) list * sort -> theory -> local_theory
val overloading: (string * (string * typ) * bool) list -> theory -> local_theory
val overloading_cmd: (string * string * bool) list -> theory -> local_theory
end;
structure TheoryTarget: THEORY_TARGET =
struct
(* context data *)
datatype target = Target of {target: string, is_locale: bool,
is_class: bool, instantiation: string list * (string * sort) list * sort,
overloading: (string * (string * typ) * bool) list};
fun make_target target is_locale is_class instantiation overloading =
Target {target = target, is_locale = is_locale,
is_class = is_class, instantiation = instantiation, overloading = overloading};
val global_target = make_target "" false false ([], [], []) [];
structure Data = ProofDataFun
(
type T = target;
fun init _ = global_target;
);
val peek = (fn Target args => args) o Data.get;
(* pretty *)
fun pretty_thy ctxt target is_locale is_class =
let
val thy = ProofContext.theory_of ctxt;
val target_name = (if is_class then "class " else "locale ") ^ Locale.extern thy target;
val fixes = map (fn (x, T) => (Name.binding x, SOME T, NoSyn))
(#1 (ProofContext.inferred_fixes ctxt));
val assumes = map (fn A => (Attrib.no_binding, [(Thm.term_of A, [])]))
(Assumption.assms_of ctxt);
val elems =
(if null fixes then [] else [Element.Fixes fixes]) @
(if null assumes then [] else [Element.Assumes assumes]);
in
if target = "" then []
else if null elems then [Pretty.str target_name]
else [Pretty.big_list (target_name ^ " =")
(map (Pretty.chunks o Element.pretty_ctxt ctxt) elems)]
end;
fun pretty (Target {target, is_locale, is_class, instantiation, overloading}) ctxt =
Pretty.block [Pretty.str "theory", Pretty.brk 1,
Pretty.str (Context.theory_name (ProofContext.theory_of ctxt))] ::
(if not (null overloading) then [Overloading.pretty ctxt]
else if not (null (#1 instantiation)) then [Class.pretty_instantiation ctxt]
else pretty_thy ctxt target is_locale is_class);
(* target declarations *)
fun target_decl add (Target {target, is_class, ...}) d lthy =
let
val d' = Morphism.transform (LocalTheory.target_morphism lthy) d;
val d0 = Morphism.form d';
in
if target = "" then
lthy
|> LocalTheory.theory (Context.theory_map d0)
|> LocalTheory.target (Context.proof_map d0)
else
lthy
|> LocalTheory.target (add target d')
(*|> is_class ? LocalTheory.raw_theory (Class.declaration target d')*)
end;
val type_syntax = target_decl Locale.add_type_syntax;
val term_syntax = target_decl Locale.add_term_syntax;
val declaration = target_decl Locale.add_declaration;
fun class_target (Target {target, ...}) f =
LocalTheory.raw_theory f #>
LocalTheory.target (Class.refresh_syntax target);
(* notes *)
fun import_export_proof ctxt (name, raw_th) =
let
val thy = ProofContext.theory_of ctxt;
val thy_ctxt = ProofContext.init thy;
val certT = Thm.ctyp_of thy;
val cert = Thm.cterm_of thy;
(*export assumes/defines*)
val th = Goal.norm_result raw_th;
val (defs, th') = LocalDefs.export ctxt thy_ctxt th;
val concl_conv = MetaSimplifier.rewrite true defs (Thm.cprop_of th);
val assms = map (MetaSimplifier.rewrite_rule defs o Thm.assume) (Assumption.assms_of ctxt);
val nprems = Thm.nprems_of th' - Thm.nprems_of th;
(*export fixes*)
val tfrees = map TFree (Thm.fold_terms Term.add_tfrees th' []);
val frees = map Free (Thm.fold_terms Term.add_frees th' []);
val (th'' :: vs) = (th' :: map (Drule.mk_term o cert) (map Logic.mk_type tfrees @ frees))
|> Variable.export ctxt thy_ctxt
|> Drule.zero_var_indexes_list;
(*thm definition*)
val result = PureThy.name_thm true true Position.none name th'';
(*import fixes*)
val (tvars, vars) =
chop (length tfrees) (map (Thm.term_of o Drule.dest_term) vs)
|>> map Logic.dest_type;
val instT = map_filter (fn (TVar v, T) => SOME (v, T) | _ => NONE) (tvars ~~ tfrees);
val inst = filter (is_Var o fst) (vars ~~ frees);
val cinstT = map (pairself certT o apfst TVar) instT;
val cinst = map (pairself (cert o Term.map_types (TermSubst.instantiateT instT))) inst;
val result' = Thm.instantiate (cinstT, cinst) result;
(*import assumes/defines*)
val assm_tac = FIRST' (map (fn assm => Tactic.compose_tac (false, assm, 0)) assms);
val result'' =
(case SINGLE (Seq.INTERVAL assm_tac 1 nprems) result' of
NONE => raise THM ("Failed to re-import result", 0, [result'])
| SOME res => LocalDefs.trans_props ctxt [res, Thm.symmetric concl_conv])
|> Goal.norm_result
|> PureThy.name_thm false false Position.none name;
in (result'', result) end;
fun note_local kind facts ctxt =
ctxt
|> ProofContext.qualified_names
|> ProofContext.note_thmss_i kind facts
||> ProofContext.restore_naming ctxt;
fun notes (Target {target, is_locale, is_class, ...}) kind facts lthy =
let
val thy = ProofContext.theory_of lthy;
val full = LocalTheory.full_name lthy;
val facts' = facts
|> map (fn (a, bs) =>
(a, PureThy.burrow_fact (PureThy.name_multi (full (Name.name_of (fst a)))) bs))
|> PureThy.map_facts (import_export_proof lthy);
val local_facts = PureThy.map_facts #1 facts'
|> Attrib.map_facts (Attrib.attribute_i thy);
val target_facts = PureThy.map_facts #1 facts'
|> is_locale ? Element.facts_map (Element.morph_ctxt (LocalTheory.target_morphism lthy));
val global_facts = PureThy.map_facts #2 facts'
|> Attrib.map_facts (if is_locale then K I else Attrib.attribute_i thy);
in
lthy |> LocalTheory.theory
(Sign.qualified_names
#> PureThy.note_thmss_grouped kind (LocalTheory.group_of lthy) global_facts #> snd
#> Sign.restore_naming thy)
|> not is_locale ? LocalTheory.target (note_local kind global_facts #> snd)
|> is_locale ? LocalTheory.target (Locale.add_thmss target kind target_facts)
(*|> is_class ? LocalTheory.raw_theory (Class.note target kind target_facts #> snd)*)
|> note_local kind local_facts
end;
(* declare_const *)
fun fork_mixfix (Target {is_locale, is_class, ...}) mx =
if not is_locale then (NoSyn, NoSyn, mx)
else if not is_class then (NoSyn, mx, NoSyn)
else (mx, NoSyn, NoSyn);
fun locale_const (Target {target, is_class, ...}) (prmode as (mode, _)) tags ((c, mx), rhs) phi =
let
val c' = Morphism.name phi c;
val rhs' = Morphism.term phi rhs;
val name = Name.name_of c;
val name' = Name.name_of c';
val legacy_arg = (name', Term.close_schematic_term (Logic.legacy_varify rhs'));
val arg = (name', Term.close_schematic_term rhs');
val similar_body = Type.similar_types (rhs, rhs');
(* FIXME workaround based on educated guess *)
val class_global = name = NameSpace.base name'
andalso Class.class_prefix target = hd (NameSpace.explode name');
in
not (is_class andalso (similar_body orelse class_global)) ?
(Context.mapping_result
(Sign.add_abbrev PrintMode.internal tags legacy_arg)
(ProofContext.add_abbrev PrintMode.internal tags arg)
#-> (fn (lhs' as Const (d, _), _) =>
similar_body ?
(Context.mapping (Sign.revert_abbrev mode d) (ProofContext.revert_abbrev mode d) #>
Morphism.form (ProofContext.target_notation true prmode [(lhs', mx)]))))
end;
fun declare_const (ta as Target {target, is_locale, is_class, ...}) depends ((b, T), mx) lthy =
let
val c = Name.name_of b;
val tags = LocalTheory.group_position_of lthy;
val xs = filter depends (#1 (ProofContext.inferred_fixes (LocalTheory.target_of lthy)));
val U = map #2 xs ---> T;
val (mx1, mx2, mx3) = fork_mixfix ta mx;
fun syntax_error c = error ("Illegal mixfix syntax for overloaded constant " ^ quote c);
val declare_const =
(case Class.instantiation_param lthy c of
SOME c' =>
if mx3 <> NoSyn then syntax_error c'
else LocalTheory.theory_result (AxClass.declare_overloaded (c', U))
##> Class.confirm_declaration c
| NONE =>
(case Overloading.operation lthy c of
SOME (c', _) =>
if mx3 <> NoSyn then syntax_error c'
else LocalTheory.theory_result (Overloading.declare (c', U))
##> Overloading.confirm c
| NONE => LocalTheory.theory_result (Sign.declare_const tags ((b, U), mx3))));
val (const, lthy') = lthy |> declare_const;
val t = Term.list_comb (const, map Free xs);
in
lthy'
|> is_locale ? term_syntax ta (locale_const ta Syntax.mode_default tags ((b, mx2), t))
|> is_class ? class_target ta (Class.declare target tags ((c, mx1), t))
|> LocalDefs.add_def ((b, NoSyn), t)
end;
(* abbrev *)
fun abbrev (ta as Target {target, is_locale, is_class, ...}) prmode ((b, mx), t) lthy =
let
val c = Name.name_of b;
val tags = LocalTheory.group_position_of lthy;
val thy_ctxt = ProofContext.init (ProofContext.theory_of lthy);
val target_ctxt = LocalTheory.target_of lthy;
val (mx1, mx2, mx3) = fork_mixfix ta mx;
val t' = Assumption.export_term lthy target_ctxt t;
val xs = map Free (rev (Variable.add_fixed target_ctxt t' []));
val u = fold_rev lambda xs t';
val global_rhs =
singleton (Variable.export_terms (Variable.declare_term u target_ctxt) thy_ctxt) u;
in
lthy |>
(if is_locale then
LocalTheory.theory_result (Sign.add_abbrev PrintMode.internal tags (c, global_rhs))
#-> (fn (lhs, _) =>
let val lhs' = Term.list_comb (Logic.unvarify lhs, xs) in
term_syntax ta (locale_const ta prmode tags ((b, mx2), lhs')) #>
is_class ? class_target ta (Class.abbrev target prmode tags ((c, mx1), t'))
end)
else
LocalTheory.theory
(Sign.add_abbrev (#1 prmode) tags (c, global_rhs) #-> (fn (lhs, _) =>
Sign.notation true prmode [(lhs, mx3)])))
|> ProofContext.add_abbrev PrintMode.internal tags (c, t) |> snd
|> LocalDefs.fixed_abbrev ((b, NoSyn), t)
end;
(* define *)
fun define (ta as Target {target, is_locale, is_class, ...})
kind ((b, mx), ((name, atts), rhs)) lthy =
let
val thy = ProofContext.theory_of lthy;
val thy_ctxt = ProofContext.init thy;
val c = Name.name_of b;
val name' = Name.map_name (Thm.def_name_optional c) name;
val (rhs', rhs_conv) =
LocalDefs.export_cterm lthy thy_ctxt (Thm.cterm_of thy rhs) |>> Thm.term_of;
val xs = Variable.add_fixed (LocalTheory.target_of lthy) rhs' [];
val T = Term.fastype_of rhs;
(*const*)
val ((lhs, local_def), lthy2) = lthy |> declare_const ta (member (op =) xs) ((b, T), mx);
val (_, lhs') = Logic.dest_equals (Thm.prop_of local_def);
(*def*)
val define_const =
(case Overloading.operation lthy c of
SOME (_, checked) =>
(fn name => fn (Const (c, _), rhs) => Overloading.define checked name (c, rhs))
| NONE =>
if is_none (Class.instantiation_param lthy c)
then (fn name => fn eq => Thm.add_def false false (name, Logic.mk_equals eq))
else (fn name => fn (Const (c, _), rhs) => AxClass.define_overloaded name (c, rhs)));
val (global_def, lthy3) = lthy2
|> LocalTheory.theory_result (define_const (Name.name_of name') (lhs', rhs'));
val def = LocalDefs.trans_terms lthy3
[(*c == global.c xs*) local_def,
(*global.c xs == rhs'*) global_def,
(*rhs' == rhs*) Thm.symmetric rhs_conv];
(*note*)
val ([(res_name, [res])], lthy4) = lthy3
|> notes ta kind [((name', atts), [([def], [])])];
in ((lhs, (res_name, res)), lthy4) end;
(* init *)
local
fun init_target _ NONE = global_target
| init_target thy (SOME target) =
make_target target true (Class.is_class thy target) ([], [], []) [];
fun init_ctxt (Target {target, is_locale, is_class, instantiation, overloading}) =
if not (null (#1 instantiation)) then Class.init_instantiation instantiation
else if not (null overloading) then Overloading.init overloading
else if not is_locale then ProofContext.init
else if not is_class then Locale.init target
else Class.init target;
fun init_lthy (ta as Target {target, instantiation, overloading, ...}) =
Data.put ta #>
LocalTheory.init (NameSpace.base target)
{pretty = pretty ta,
abbrev = abbrev ta,
define = define ta,
notes = notes ta,
type_syntax = type_syntax ta,
term_syntax = term_syntax ta,
declaration = declaration ta,
reinit = fn lthy => init_lthy_ctxt ta (ProofContext.theory_of lthy),
exit = LocalTheory.target_of o
(if not (null (#1 instantiation)) then Class.conclude_instantiation
else if not (null overloading) then Overloading.conclude
else I)}
and init_lthy_ctxt ta = init_lthy ta o init_ctxt ta;
fun gen_overloading prep_const raw_ops thy =
let
val ctxt = ProofContext.init thy;
val ops = raw_ops |> map (fn (name, const, checked) =>
(name, Term.dest_Const (prep_const ctxt const), checked));
in thy |> init_lthy_ctxt (make_target "" false false ([], [], []) ops) end;
in
fun init target thy = init_lthy_ctxt (init_target thy target) thy;
fun begin target ctxt = init_lthy (init_target (ProofContext.theory_of ctxt) (SOME target)) ctxt;
fun context "-" thy = init NONE thy
| context target thy = init (SOME (Locale.intern thy target)) thy;
fun instantiation arities = init_lthy_ctxt (make_target "" false false arities []);
val overloading = gen_overloading (fn ctxt => Syntax.check_term ctxt o Const);
val overloading_cmd = gen_overloading Syntax.read_term;
end;
end;