/* Title: Pure/General/graph.scala
Author: Makarius
Directed graphs.
*/
package isabelle
import scala.collection.immutable.{SortedMap, SortedSet}
import scala.annotation.tailrec
object Graph {
class Duplicate[Key](val key: Key) extends Exception {
override def toString: String = "Graph.Duplicate(" + key.toString + ")"
}
class Undefined[Key](val key: Key) extends Exception {
override def toString: String = "Graph.Undefined(" + key.toString + ")"
}
class Cycles[Key](val cycles: List[List[Key]]) extends Exception {
override def toString: String = cycles.mkString("Graph.Cycles(", ",\n", ")")
}
def empty[Key, A](implicit ord: Ordering[Key]): Graph[Key, A] =
new Graph[Key, A](SortedMap.empty(ord))
def make[Key, A](
entries: List[((Key, A), List[Key])],
converse: Boolean = false)(
implicit ord: Ordering[Key]
): Graph[Key, A] = {
val graph1 =
entries.foldLeft(empty[Key, A](ord)) {
case (graph, ((x, info), _)) => graph.new_node(x, info)
}
val graph2 =
entries.foldLeft(graph1) {
case (graph, ((x, _), ys)) =>
ys.foldLeft(graph) {
case (g, y) => if (converse) g.add_edge(y, x) else g.add_edge(x, y)
}
}
graph2
}
def string[A]: Graph[String, A] = empty(Ordering.String)
def int[A]: Graph[Int, A] = empty(Ordering.Int)
def long[A]: Graph[Long, A] = empty(Ordering.Long)
/* XML data representation */
def encode[Key, A](key: XML.Encode.T[Key], info: XML.Encode.T[A]): XML.Encode.T[Graph[Key, A]] =
{ (graph: Graph[Key, A]) =>
import XML.Encode._
list(pair(pair(key, info), list(key)))(graph.dest)
}
def decode[Key, A](key: XML.Decode.T[Key], info: XML.Decode.T[A])(
implicit ord: Ordering[Key]): XML.Decode.T[Graph[Key, A]] =
{ (body: XML.Body) =>
import XML.Decode._
make(list(pair(pair(key, info), list(key)))(body))(ord)
}
}
final class Graph[Key, A] private(
protected val rep: SortedMap[Key, (A, (SortedSet[Key], SortedSet[Key]))]
) {
override def hashCode: Int = rep.hashCode
override def equals(that: Any): Boolean =
that match {
case other: Graph[_, _] => rep == other.rep
case _ => false
}
type Keys = SortedSet[Key]
type Entry = (A, (Keys, Keys))
def ordering: Ordering[Key] = rep.ordering
def empty_keys: Keys = SortedSet.empty[Key](ordering)
/* graphs */
def is_empty: Boolean = rep.isEmpty
def defined(x: Key): Boolean = rep.isDefinedAt(x)
def domain: Set[Key] = rep.keySet
def size: Int = rep.size
def iterator: Iterator[(Key, Entry)] = rep.iterator
def keys_iterator: Iterator[Key] = iterator.map(_._1)
def keys: List[Key] = keys_iterator.toList
def dest: List[((Key, A), List[Key])] =
(for ((x, (i, (_, succs))) <- iterator) yield ((x, i), succs.toList)).toList
override def toString: String =
dest.map({ case ((x, _), ys) =>
x.toString + " -> " + ys.iterator.map(_.toString).mkString("{", ", ", "}") })
.mkString("Graph(", ", ", ")")
private def get_entry(x: Key): Entry =
rep.get(x) match {
case Some(entry) => entry
case None => throw new Graph.Undefined(x)
}
private def map_entry(x: Key, f: Entry => Entry): Graph[Key, A] =
new Graph[Key, A](rep + (x -> f(get_entry(x))))
/* nodes */
def get_node(x: Key): A = get_entry(x)._1
def map_node(x: Key, f: A => A): Graph[Key, A] =
map_entry(x, { case (i, ps) => (f(i), ps) })
/* reachability */
/*reachable nodes with length of longest path*/
def reachable_length(
count: Key => Long,
next: Key => Keys,
xs: List[Key]
): Map[Key, Long] = {
def reach(length: Long)(rs: Map[Key, Long], x: Key): Map[Key, Long] =
if (rs.get(x) match { case Some(n) => n >= length case None => false }) rs
else next(x).foldLeft(rs + (x -> length))(reach(length + count(x)))
xs.foldLeft(Map.empty[Key, Long])(reach(0))
}
def node_height(count: Key => Long): Map[Key, Long] =
reachable_length(count, imm_preds, maximals)
def node_depth(count: Key => Long): Map[Key, Long] =
reachable_length(count, imm_succs, minimals)
/*reachable nodes with size limit*/
def reachable_limit(
limit: Long,
count: Key => Long,
next: Key => Keys,
xs: List[Key]
): Keys = {
def reach(res: (Long, Keys), x: Key): (Long, Keys) = {
val (n, rs) = res
if (rs.contains(x)) res
else next(x).foldLeft((n + count(x), rs + x))(reach)
}
@tailrec def reachs(size: Long, rs: Keys, rest: List[Key]): Keys =
rest match {
case Nil => rs
case head :: tail =>
val (size1, rs1) = reach((size, rs), head)
if (size > 0 && size1 > limit) rs
else reachs(size1, rs1, tail)
}
reachs(0, empty_keys, xs)
}
/*reachable nodes with result in topological order (for acyclic graphs)*/
private def reachable(
next: Key => Keys,
xs: List[Key],
rev: Boolean = false
): (List[List[Key]], Keys) = {
def reach(x: Key, reached: (List[Key], Keys)): (List[Key], Keys) = {
val (rs, r_set) = reached
if (r_set(x)) reached
else {
val (rs1, r_set1) =
if (rev) next(x).foldLeft((rs, r_set + x)) { case (b, a) => reach(a, b) }
else next(x).foldRight((rs, r_set + x))(reach)
(x :: rs1, r_set1)
}
}
def reachs(reached: (List[List[Key]], Keys), x: Key): (List[List[Key]], Keys) = {
val (rss, r_set) = reached
val (rs, r_set1) = reach(x, (Nil, r_set))
(rs :: rss, r_set1)
}
xs.foldLeft((List.empty[List[Key]], empty_keys))(reachs)
}
/*immediate*/
def imm_preds(x: Key): Keys = get_entry(x)._2._1
def imm_succs(x: Key): Keys = get_entry(x)._2._2
/*transitive*/
def all_preds_rev(xs: List[Key]): List[Key] =
reachable(imm_preds, xs, rev = true)._1.flatten.reverse
def all_preds(xs: List[Key]): List[Key] = reachable(imm_preds, xs)._1.flatten
def all_succs(xs: List[Key]): List[Key] = reachable(imm_succs, xs)._1.flatten
/*strongly connected components; see: David King and John Launchbury,
"Structuring Depth First Search Algorithms in Haskell"*/
def strong_conn: List[List[Key]] =
reachable(imm_preds, all_succs(keys))._1.filterNot(_.isEmpty).reverse
/* minimal and maximal elements */
def minimals: List[Key] =
rep.foldLeft(List.empty[Key]) {
case (ms, (m, (_, (preds, _)))) => if (preds.isEmpty) m :: ms else ms
}
def maximals: List[Key] =
rep.foldLeft(List.empty[Key]) {
case (ms, (m, (_, (_, succs)))) => if (succs.isEmpty) m :: ms else ms
}
def is_minimal(x: Key): Boolean = imm_preds(x).isEmpty
def is_maximal(x: Key): Boolean = imm_succs(x).isEmpty
def is_isolated(x: Key): Boolean = is_minimal(x) && is_maximal(x)
/* node operations */
def new_node(x: Key, info: A): Graph[Key, A] = {
if (defined(x)) throw new Graph.Duplicate(x)
else new Graph[Key, A](rep + (x -> (info, (empty_keys, empty_keys))))
}
def default_node(x: Key, info: A): Graph[Key, A] =
if (defined(x)) this else new_node(x, info)
private def del_adjacent(fst: Boolean, x: Key)(map: SortedMap[Key, Entry], y: Key)
: SortedMap[Key, Entry] =
map.get(y) match {
case None => map
case Some((i, (preds, succs))) =>
map + (y -> (i, if (fst) (preds - x, succs) else (preds, succs - x)))
}
def del_node(x: Key): Graph[Key, A] = {
val (preds, succs) = get_entry(x)._2
new Graph[Key, A](
succs.foldLeft(preds.foldLeft(rep - x)(del_adjacent(false, x)))(del_adjacent(true, x)))
}
def restrict(pred: Key => Boolean): Graph[Key, A] =
iterator.foldLeft(this) { case (graph, (x, _)) => if (!pred(x)) graph.del_node(x) else graph }
def exclude(pred: Key => Boolean): Graph[Key, A] = restrict(name => !pred(name))
/* edge operations */
def edges_iterator: Iterator[(Key, Key)] =
for { x <- keys_iterator; y <- imm_succs(x).iterator } yield (x, y)
def is_edge(x: Key, y: Key): Boolean =
defined(x) && defined(y) && imm_succs(x)(y)
def add_edge(x: Key, y: Key): Graph[Key, A] =
if (is_edge(x, y)) this
else
map_entry(y, { case (i, (preds, succs)) => (i, (preds + x, succs)) }).
map_entry(x, { case (i, (preds, succs)) => (i, (preds, succs + y)) })
def del_edge(x: Key, y: Key): Graph[Key, A] =
if (is_edge(x, y))
map_entry(y, { case (i, (preds, succs)) => (i, (preds - x, succs)) }).
map_entry(x, { case (i, (preds, succs)) => (i, (preds, succs - y)) })
else this
/* irreducible paths -- Hasse diagram */
private def irreducible_preds(x_set: Keys, path: List[Key], z: Key): List[Key] = {
def red(x: Key)(x1: Key) = is_edge(x, x1) && x1 != z
@tailrec def irreds(xs0: List[Key], xs1: List[Key]): List[Key] =
xs0 match {
case Nil => xs1
case x :: xs =>
if (!x_set(x) || x == z || path.contains(x) ||
xs.exists(red(x)) || xs1.exists(red(x)))
irreds(xs, xs1)
else irreds(xs, x :: xs1)
}
irreds(imm_preds(z).toList, Nil)
}
def irreducible_paths(x: Key, y: Key): List[List[Key]] = {
val (_, x_set) = reachable(imm_succs, List(x))
def paths(path: List[Key])(ps: List[List[Key]], z: Key): List[List[Key]] =
if (x == z) (z :: path) :: ps
else irreducible_preds(x_set, path, z).foldLeft(ps)(paths(z :: path))
if ((x == y) && !is_edge(x, x)) List(Nil) else paths(Nil)(Nil, y)
}
/* transitive closure and reduction */
private def transitive_step(z: Key): Graph[Key, A] = {
val (preds, succs) = get_entry(z)._2
var graph = this
for (x <- preds; y <- succs) graph = graph.add_edge(x, y)
graph
}
def transitive_closure: Graph[Key, A] = keys_iterator.foldLeft(this)(_.transitive_step(_))
def transitive_reduction_acyclic: Graph[Key, A] = {
val trans = this.transitive_closure
if (trans.iterator.exists({ case (x, (_, (_, succs))) => succs.contains(x) }))
error("Cyclic graph")
var graph = this
for {
(x, (_, (_, succs))) <- iterator
y <- succs
if trans.imm_preds(y).exists(z => trans.is_edge(x, z))
} graph = graph.del_edge(x, y)
graph
}
/* maintain acyclic graphs */
def add_edge_acyclic(x: Key, y: Key): Graph[Key, A] =
if (is_edge(x, y)) this
else {
irreducible_paths(y, x) match {
case Nil => add_edge(x, y)
case cycles => throw new Graph.Cycles(cycles.map(x :: _))
}
}
def add_deps_acyclic(y: Key, xs: List[Key]): Graph[Key, A] =
xs.foldLeft(this)(_.add_edge_acyclic(_, y))
def topological_order: List[Key] = all_succs(minimals)
}