(* Title: HOL/Tools/set_comprehension_pointfree.ML
Author: Felix Kuperjans, Lukas Bulwahn, TU Muenchen
Author: Rafal Kolanski, NICTA
Simproc for rewriting set comprehensions to pointfree expressions.
*)
signature SET_COMPREHENSION_POINTFREE =
sig
val base_proc : Simplifier.proc
val code_proc : Simplifier.proc
val proc : Simplifier.proc
end
structure Set_Comprehension_Pointfree : SET_COMPREHENSION_POINTFREE =
struct
(* syntactic operations *)
fun mk_inf (t1, t2) =
let val T = fastype_of t1
in \<^Const>\<open>inf T for t1 t2\<close> end
fun mk_sup (t1, t2) =
let val T = fastype_of t1
in \<^Const>\<open>sup T for t1 t2\<close> end
fun mk_Compl t =
let val T = fastype_of t
in \<^Const>\<open>uminus T for t\<close> end
fun mk_image t1 t2 =
let val \<^Type>\<open>fun A B\<close> = fastype_of t1
in \<^Const>\<open>image A B for t1 t2\<close> end;
fun mk_sigma (t1, t2) =
let
val \<^Type>\<open>set A\<close> = fastype_of t1
val \<^Type>\<open>set B\<close> = fastype_of t2
in \<^Const>\<open>Sigma A B for t1 \<open>absdummy A t2\<close>\<close> end;
fun mk_vimage f s =
let val \<^Type>\<open>fun A B\<close> = fastype_of f
in \<^Const>\<open>vimage A B for f s\<close> end;
fun dest_Collect \<^Const_>\<open>Collect _ for \<open>Abs (x, T, t)\<close>\<close> = ((x, T), t)
| dest_Collect t = raise TERM ("dest_Collect", [t])
(* Copied from predicate_compile_aux.ML *)
fun strip_ex \<^Const_>\<open>Ex _ for \<open>Abs (x, T, t)\<close>\<close> =
let val (xTs, t') = strip_ex t
in ((x, T) :: xTs, t') end
| strip_ex t = ([], t)
fun mk_prod1 Ts (t1, t2) =
let val (A, B) = apply2 (curry fastype_of1 Ts) (t1, t2)
in \<^Const>\<open>Pair A B for t1 t2\<close> end;
fun mk_split_abs vs (Bound i) t = let val (x, T) = nth vs i in Abs (x, T, t) end
| mk_split_abs vs \<^Const_>\<open>Pair _ _ for u v\<close> t =
HOLogic.mk_case_prod (mk_split_abs vs u (mk_split_abs vs v t))
| mk_split_abs _ t _ = raise TERM ("mk_split_abs: bad term", [t]);
(* a variant of HOLogic.strip_ptupleabs *)
val strip_ptupleabs =
let
fun strip [] qs vs t = (t, rev vs, qs)
| strip (p :: ps) qs vs \<^Const_>\<open>case_prod _ _ _ for t\<close> =
strip ((1 :: p) :: (2 :: p) :: ps) (p :: qs) vs t
| strip (_ :: ps) qs vs (Abs (s, T, t)) = strip ps qs ((s, T) :: vs) t
| strip (_ :: ps) qs vs t = strip ps qs
((Name.uu_, hd (binder_types (fastype_of1 (map snd vs, t)))) :: vs)
(incr_boundvars 1 t $ Bound 0)
in strip [[]] [] [] end;
(* patterns *)
datatype pattern = Pattern of int list
fun dest_Pattern (Pattern bs) = bs
fun type_of_pattern Ts (Pattern bs) = HOLogic.mk_tupleT (map (nth Ts) bs)
fun term_of_pattern Ts (Pattern bs) =
let
fun mk [b] = Bound b
| mk (b :: bs) =
\<^Const>\<open>Pair \<open>nth Ts b\<close> \<open>type_of_pattern Ts (Pattern bs)\<close> for \<open>Bound b\<close> \<open>mk bs\<close>\<close>
in mk bs end;
(* formulas *)
datatype formula = Atom of (pattern * term) | Int of formula * formula | Un of formula * formula
fun map_atom f (Atom a) = Atom (f a)
| map_atom _ x = x
fun is_collect_atom (Atom (_, \<^Const_>\<open>Collect _ for _\<close>)) = true
| is_collect_atom (Atom (_, \<^Const_>\<open>uminus _ for \<^Const_>\<open>Collect _ for _\<close>\<close>)) = true
| is_collect_atom _ = false
fun mk_case_prod _ [(x, T)] t = (T, Abs (x, T, t))
| mk_case_prod rT ((x, T) :: vs) t =
let
val (T', t') = mk_case_prod rT vs t
val t'' = \<^Const>\<open>case_prod T T' rT for \<open>Abs (x, T, t')\<close>\<close>
in (domain_type (fastype_of t''), t'') end
fun mk_term vs t =
let
val bs = loose_bnos t
val vs' = map (nth (rev vs)) bs
val subst = map_index (fn (i, j) => (j, Bound i)) (rev bs)
|> sort (fn (p1, p2) => int_ord (fst p1, fst p2))
|> (fn subst' => map (fn i => the_default (Bound i) (AList.lookup (op =) subst' i)) (0 upto (fst (snd (split_last subst')))))
val t' = subst_bounds (subst, t)
val tuple = Pattern bs
in (tuple, (vs', t')) end
fun default_atom vs t =
let
val (tuple, (vs', t')) = mk_term vs t
val T = HOLogic.mk_tupleT (map snd vs')
val s = \<^Const>\<open>Collect T for \<open>snd (mk_case_prod \<^Type>\<open>bool\<close> vs' t')\<close>\<close>
in
(tuple, Atom (tuple, s))
end
fun mk_atom vs (t as \<^Const_>\<open>Set.member _ for x s\<close>) =
if not (null (loose_bnos s)) then
default_atom vs t
else
(case try (map (fn Bound i => i) o HOLogic.strip_tuple) x of
SOME pat => (Pattern pat, Atom (Pattern pat, s))
| NONE =>
let
val (tuple, (vs', x')) = mk_term vs x
val \<^Type>\<open>set rT\<close> = fastype_of s
val s = mk_vimage (snd (mk_case_prod rT vs' x')) s
in (tuple, Atom (tuple, s)) end)
| mk_atom vs \<^Const_>\<open>Not for t\<close> = apsnd (map_atom (apsnd mk_Compl)) (mk_atom vs t)
| mk_atom vs t = default_atom vs t
fun merge' [] (pats1, pats2) = ([], (pats1, pats2))
| merge' pat (pats, []) = (pat, (pats, []))
| merge' pat (pats1, pats) =
let
fun disjoint_to_pat p = null (inter (op =) pat p)
val overlap_pats = filter_out disjoint_to_pat pats
val rem_pats = filter disjoint_to_pat pats
val (pat, (pats', pats1')) = merge' (distinct (op =) (flat overlap_pats @ pat)) (rem_pats, pats1)
in
(pat, (pats1', pats'))
end
fun merge ([], pats) = pats
| merge (pat :: pats', pats) =
let val (pat', (pats1', pats2')) = merge' pat (pats', pats)
in pat' :: merge (pats1', pats2') end;
fun restricted_merge ([], pats) = pats
| restricted_merge (pat :: pats', pats) =
let
fun disjoint_to_pat p = null (inter (op =) pat p)
val overlap_pats = filter_out disjoint_to_pat pats
val rem_pats = filter disjoint_to_pat pats
in
case overlap_pats of
[] => pat :: restricted_merge (pats', rem_pats)
| [pat'] => if subset (op =) (pat, pat') then
pat' :: restricted_merge (pats', rem_pats)
else if subset (op =) (pat', pat) then
pat :: restricted_merge (pats', rem_pats)
else error "restricted merge: two patterns require relational join"
| _ => error "restricted merge: multiple patterns overlap"
end;
fun map_atoms f (Atom a) = Atom (f a)
| map_atoms f (Un (fm1, fm2)) = Un (apply2 (map_atoms f) (fm1, fm2))
| map_atoms f (Int (fm1, fm2)) = Int (apply2 (map_atoms f) (fm1, fm2))
fun extend Ts bs t = foldr1 mk_sigma (t :: map (fn b => HOLogic.mk_UNIV (nth Ts b)) bs)
fun rearrange vs (pat, pat') t =
let
val subst = map_index (fn (i, b) => (b, i)) (rev pat)
val vs' = map (nth (rev vs)) pat
val Ts' = map snd (rev vs')
val bs = map (fn b => the (AList.lookup (op =) subst b)) pat'
val rt = term_of_pattern Ts' (Pattern bs)
val rT = type_of_pattern Ts' (Pattern bs)
val (_, f) = mk_case_prod rT vs' rt
in
mk_image f t
end;
fun adjust vs pats (Pattern pat, t) =
let
val SOME p = find_first (fn p => not (null (inter (op =) pat p))) pats
val missing = subtract (op =) pat p
val Ts = rev (map snd vs)
val t' = extend Ts missing t
in (Pattern p, rearrange vs (pat @ missing, p) t') end
fun adjust_atoms vs pats fm = map_atoms (adjust vs pats) fm
fun merge_inter vs (pats1, fm1) (pats2, fm2) =
let
val pats = restricted_merge (map dest_Pattern pats1, map dest_Pattern pats2)
val (fm1', fm2') = apply2 (adjust_atoms vs pats) (fm1, fm2)
in
(map Pattern pats, Int (fm1', fm2'))
end;
fun merge_union vs (pats1, fm1) (pats2, fm2) =
let
val pats = merge (map dest_Pattern pats1, map dest_Pattern pats2)
val (fm1', fm2') = apply2 (adjust_atoms vs pats) (fm1, fm2)
in
(map Pattern pats, Un (fm1', fm2'))
end;
fun mk_formula vs \<^Const_>\<open>conj for t1 t2\<close> = merge_inter vs (mk_formula vs t1) (mk_formula vs t2)
| mk_formula vs \<^Const_>\<open>disj for t1 t2\<close> = merge_union vs (mk_formula vs t1) (mk_formula vs t2)
| mk_formula vs t = apfst single (mk_atom vs t)
fun strip_Int (Int (fm1, fm2)) = fm1 :: (strip_Int fm2)
| strip_Int fm = [fm]
(* term construction *)
fun reorder_bounds pats t =
let
val bounds = maps dest_Pattern pats
val bperm = bounds ~~ ((length bounds - 1) downto 0)
|> sort (fn (i,j) => int_ord (fst i, fst j)) |> map snd
in
subst_bounds (map Bound bperm, t)
end;
fun is_reordering t =
let val (t', _, _) = HOLogic.strip_ptupleabs t
in forall (fn Bound _ => true) (HOLogic.strip_tuple t') end
fun mk_pointfree_expr t =
let
val ((x, T), (vs, t'')) = apsnd strip_ex (dest_Collect t)
val Ts = map snd (rev vs)
fun mk_mem_UNIV n = HOLogic.mk_mem (Bound n, HOLogic.mk_UNIV (nth Ts n))
fun lookup (pat', t) pat = if pat = pat' then t else HOLogic.mk_UNIV (type_of_pattern Ts pat)
val conjs = HOLogic.dest_conj t''
val refl = \<^Const>\<open>HOL.eq T for \<open>Bound (length vs)\<close> \<open>Bound (length vs)\<close>\<close>
val is_the_eq =
the_default false o (try (fn eq => fst (HOLogic.dest_eq eq) = Bound (length vs)))
val eq = the_default refl (find_first is_the_eq conjs)
val f = snd (HOLogic.dest_eq eq)
val conjs' = filter_out (fn t => eq = t) conjs
val unused_bounds = subtract (op =) (distinct (op =) (maps loose_bnos conjs'))
(0 upto (length vs - 1))
val (pats, fm) =
mk_formula ((x, T) :: vs) (foldr1 HOLogic.mk_conj (conjs' @ map mk_mem_UNIV unused_bounds))
fun mk_set (Atom pt) = foldr1 mk_sigma (map (lookup pt) pats)
| mk_set (Un (f1, f2)) = mk_sup (mk_set f1, mk_set f2)
| mk_set (Int (f1, f2)) = mk_inf (mk_set f1, mk_set f2)
val pat = foldr1 (mk_prod1 Ts) (map (term_of_pattern Ts) pats)
val t = mk_split_abs (rev ((x, T) :: vs)) pat (reorder_bounds pats f)
in
if the_default false (try is_reordering t) andalso is_collect_atom fm then
error "mk_pointfree_expr: trivial case"
else (fm, mk_image t (mk_set fm))
end;
val rewrite_term = try mk_pointfree_expr
(* proof tactic *)
val case_prod_beta = @{lemma "case_prod g x z = case_prod (\<lambda>x y. (g x y) z) x" by (simp add: case_prod_beta)}
val vimageI2' = @{lemma "f a \<notin> A ==> a \<notin> f -` A" by simp}
val vimageE' =
@{lemma "a \<notin> f -` B ==> (\<And> x. f a = x ==> x \<notin> B ==> P) ==> P" by simp}
val collectI' = @{lemma "\<not> P a ==> a \<notin> {x. P x}" by auto}
val collectE' = @{lemma "a \<notin> {x. P x} ==> (\<not> P a ==> Q) ==> Q" by auto}
fun elim_Collect_tac ctxt =
dresolve_tac ctxt @{thms iffD1 [OF mem_Collect_eq]}
THEN' (REPEAT_DETERM o (eresolve_tac ctxt @{thms exE}))
THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms conjE}
THEN' TRY o hyp_subst_tac ctxt;
fun intro_image_tac ctxt =
resolve_tac ctxt @{thms image_eqI}
THEN' (REPEAT_DETERM1 o
(resolve_tac ctxt @{thms refl}
ORELSE' resolve_tac ctxt @{thms arg_cong2 [OF refl, where f = "(=)", OF prod.case, THEN iffD2]}
ORELSE' CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1
(HOLogic.Trueprop_conv
(HOLogic.eq_conv Conv.all_conv (Conv.rewr_conv (mk_meta_eq case_prod_beta)))))) ctxt)))
fun elim_image_tac ctxt =
eresolve_tac ctxt @{thms imageE}
THEN' REPEAT_DETERM o CHANGED o
(TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_paired_all prod.case})
THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject}
THEN' TRY o hyp_subst_tac ctxt)
fun tac1_of_formula ctxt (Int (fm1, fm2)) =
TRY o eresolve_tac ctxt @{thms conjE}
THEN' resolve_tac ctxt @{thms IntI}
THEN' (fn i => tac1_of_formula ctxt fm2 (i + 1))
THEN' tac1_of_formula ctxt fm1
| tac1_of_formula ctxt (Un (fm1, fm2)) =
eresolve_tac ctxt @{thms disjE} THEN' resolve_tac ctxt @{thms UnI1}
THEN' tac1_of_formula ctxt fm1
THEN' resolve_tac ctxt @{thms UnI2}
THEN' tac1_of_formula ctxt fm2
| tac1_of_formula ctxt (Atom _) =
REPEAT_DETERM1 o (assume_tac ctxt
ORELSE' resolve_tac ctxt @{thms SigmaI}
ORELSE' ((resolve_tac ctxt @{thms CollectI} ORELSE' resolve_tac ctxt [collectI']) THEN'
TRY o simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}]))
ORELSE' ((resolve_tac ctxt @{thms vimageI2} ORELSE' resolve_tac ctxt [vimageI2']) THEN'
TRY o simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}]))
ORELSE' (resolve_tac ctxt @{thms image_eqI} THEN'
(REPEAT_DETERM o
(resolve_tac ctxt @{thms refl}
ORELSE' resolve_tac ctxt @{thms arg_cong2[OF refl, where f = "(=)", OF prod.case, THEN iffD2]})))
ORELSE' resolve_tac ctxt @{thms UNIV_I}
ORELSE' resolve_tac ctxt @{thms iffD2[OF Compl_iff]}
ORELSE' assume_tac ctxt)
fun tac2_of_formula ctxt (Int (fm1, fm2)) =
TRY o eresolve_tac ctxt @{thms IntE}
THEN' TRY o resolve_tac ctxt @{thms conjI}
THEN' (fn i => tac2_of_formula ctxt fm2 (i + 1))
THEN' tac2_of_formula ctxt fm1
| tac2_of_formula ctxt (Un (fm1, fm2)) =
eresolve_tac ctxt @{thms UnE} THEN' resolve_tac ctxt @{thms disjI1}
THEN' tac2_of_formula ctxt fm1
THEN' resolve_tac ctxt @{thms disjI2}
THEN' tac2_of_formula ctxt fm2
| tac2_of_formula ctxt (Atom _) =
REPEAT_DETERM o
(assume_tac ctxt
ORELSE' dresolve_tac ctxt @{thms iffD1[OF mem_Sigma_iff]}
ORELSE' eresolve_tac ctxt @{thms conjE}
ORELSE' ((eresolve_tac ctxt @{thms CollectE} ORELSE' eresolve_tac ctxt [collectE']) THEN'
TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}]) THEN'
REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject} THEN' TRY o hyp_subst_tac ctxt THEN'
TRY o resolve_tac ctxt @{thms refl})
ORELSE' (eresolve_tac ctxt @{thms imageE}
THEN' (REPEAT_DETERM o CHANGED o
(TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_paired_all prod.case})
THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject}
THEN' TRY o hyp_subst_tac ctxt THEN' TRY o resolve_tac ctxt @{thms refl})))
ORELSE' eresolve_tac ctxt @{thms ComplE}
ORELSE' ((eresolve_tac ctxt @{thms vimageE} ORELSE' eresolve_tac ctxt [vimageE'])
THEN' TRY o full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm prod.case}])
THEN' TRY o hyp_subst_tac ctxt THEN' TRY o resolve_tac ctxt @{thms refl}))
fun tac ctxt fm =
let
val subset_tac1 = resolve_tac ctxt @{thms subsetI}
THEN' elim_Collect_tac ctxt
THEN' intro_image_tac ctxt
THEN' tac1_of_formula ctxt fm
val subset_tac2 = resolve_tac ctxt @{thms subsetI}
THEN' elim_image_tac ctxt
THEN' resolve_tac ctxt @{thms iffD2[OF mem_Collect_eq]}
THEN' REPEAT_DETERM o resolve_tac ctxt @{thms exI}
THEN' (TRY o REPEAT_ALL_NEW (resolve_tac ctxt @{thms conjI}))
THEN' (K (TRY (FIRSTGOAL ((TRY o hyp_subst_tac ctxt) THEN' resolve_tac ctxt @{thms refl}))))
THEN' (fn i => EVERY (rev (map_index (fn (j, f) =>
REPEAT_DETERM (eresolve_tac ctxt @{thms IntE} (i + j)) THEN
tac2_of_formula ctxt f (i + j)) (strip_Int fm))))
in
resolve_tac ctxt @{thms subset_antisym} THEN' subset_tac1 THEN' subset_tac2
end;
(* preprocessing conversion:
rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} *)
fun comprehension_conv ctxt ct =
let
fun list_ex vs t = fold_rev (fn (x, T) => fn t => \<^Const>\<open>Ex T for \<open>Abs (x, T, t)\<close>\<close>) vs t
fun mk_term t =
let
val \<^Const_>\<open>Collect T for t'\<close> = t
val (t'', vs, fp) = case strip_ptupleabs t' of
(_, [_], _) => raise TERM("mk_term", [t'])
| (t'', vs, fp) => (t'', vs, fp)
val Ts = map snd vs
val eq =
\<^Const>\<open>HOL.eq T for \<open>Bound (length Ts)\<close>
\<open>HOLogic.mk_ptuple fp (HOLogic.mk_ptupleT fp Ts) (rev (map_index (Bound o #1) Ts))\<close>\<close>
in
\<^Const>\<open>Collect T for \<open>absdummy T (list_ex vs (HOLogic.mk_conj (eq, t'')))\<close>\<close>
end;
fun is_eq th = is_some (try (HOLogic.dest_eq o HOLogic.dest_Trueprop) (Thm.prop_of th))
val unfold_thms = @{thms split_paired_all mem_Collect_eq prod.case}
fun tac ctxt =
resolve_tac ctxt @{thms set_eqI}
THEN' simp_tac (put_simpset HOL_basic_ss ctxt addsimps unfold_thms)
THEN' resolve_tac ctxt @{thms iffI}
THEN' REPEAT_DETERM o resolve_tac ctxt @{thms exI}
THEN' resolve_tac ctxt @{thms conjI} THEN' resolve_tac ctxt @{thms refl} THEN' assume_tac ctxt
THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms exE}
THEN' eresolve_tac ctxt @{thms conjE}
THEN' REPEAT_DETERM o eresolve_tac ctxt @{thms Pair_inject}
THEN' Subgoal.FOCUS (fn {prems, context = ctxt', ...} =>
simp_tac (put_simpset HOL_basic_ss ctxt' addsimps (filter is_eq prems)) 1) ctxt
THEN' TRY o assume_tac ctxt
in
case try mk_term (Thm.term_of ct) of
NONE => Thm.reflexive ct
| SOME t' =>
Goal.prove ctxt [] [] (HOLogic.mk_Trueprop (HOLogic.mk_eq (Thm.term_of ct, t')))
(fn {context, ...} => tac context 1)
RS @{thm eq_reflection}
end
(* main simprocs *)
val prep_thms =
map mk_meta_eq ([@{thm Bex_def}, @{thm Pow_iff[symmetric]}] @ @{thms ex_simps[symmetric]})
val post_thms =
map mk_meta_eq [@{thm Times_Un_distrib1[symmetric]},
@{lemma "A \<times> B \<union> A \<times> C = A \<times> (B \<union> C)" by auto},
@{lemma "(A \<times> B \<inter> C \<times> D) = (A \<inter> C) \<times> (B \<inter> D)" by auto}]
fun conv ctxt t =
let
val (t', ctxt') = yield_singleton (Variable.import_terms true) t (Variable.declare_term t ctxt)
val ct = Thm.cterm_of ctxt' t'
fun unfold_conv thms =
Raw_Simplifier.rewrite_cterm (false, false, false) (K (K NONE))
(empty_simpset ctxt' addsimps thms)
val prep_eq = (comprehension_conv ctxt' then_conv unfold_conv prep_thms) ct
val t'' = Thm.term_of (Thm.rhs_of prep_eq)
fun mk_thm (fm, t''') = Goal.prove ctxt' [] []
(HOLogic.mk_Trueprop (HOLogic.mk_eq (t'', t'''))) (fn {context, ...} => tac context fm 1)
fun unfold th = th RS (HOLogic.mk_obj_eq prep_eq RS @{thm trans})
val post =
Conv.fconv_rule
(HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (unfold_conv post_thms)))
val export = singleton (Variable.export ctxt' ctxt)
in
Option.map (export o post o unfold o mk_thm) (rewrite_term t'')
end;
fun base_proc ctxt redex =
let
val set_compr = Thm.term_of redex
in
conv ctxt set_compr
|> Option.map (fn thm => thm RS @{thm eq_reflection})
end;
fun instantiate_arg_cong ctxt pred =
let
val arg_cong = Thm.incr_indexes (maxidx_of_term pred + 1) @{thm arg_cong}
val (Var (f, _) $ _, _) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.concl_of arg_cong))
in
infer_instantiate ctxt [(f, Thm.cterm_of ctxt pred)] arg_cong
end;
fun proc ctxt redex =
let
val pred $ set_compr = Thm.term_of redex
val arg_cong' = instantiate_arg_cong ctxt pred
in
conv ctxt set_compr
|> Option.map (fn thm => thm RS arg_cong' RS @{thm eq_reflection})
end;
fun code_proc ctxt redex =
let
fun unfold_conv thms =
Raw_Simplifier.rewrite_cterm (false, false, false) (K (K NONE))
(empty_simpset ctxt addsimps thms)
val prep_thm = unfold_conv @{thms eq_equal[symmetric]} redex
in
case base_proc ctxt (Thm.rhs_of prep_thm) of
SOME rewr_thm => SOME (transitive_thm OF [transitive_thm OF [prep_thm, rewr_thm],
unfold_conv @{thms eq_equal} (Thm.rhs_of rewr_thm)])
| NONE => NONE
end;
end;