| author | blanchet |
| Mon, 21 May 2012 10:39:32 +0200 | |
| changeset 47946 | 33afcfad3f8d |
| parent 46752 | e9e7209eb375 |
| child 58889 | 5b7a9633cfa8 |
| permissions | -rw-r--r-- |
(* Title: HOL/ex/Set_Theory.thy Author: Tobias Nipkow and Lawrence C Paulson Copyright 1991 University of Cambridge *) header {* Set Theory examples: Cantor's Theorem, Schröder-Bernstein Theorem, etc. *} theory Set_Theory imports Main begin text{* These two are cited in Benzmueller and Kohlhase's system description of LEO, CADE-15, 1998 (pages 139-143) as theorems LEO could not prove. *} lemma "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by blast lemma "(X = Y \<inter> Z) = (X \<subseteq> Y \<and> X \<subseteq> Z \<and> (\<forall>V. V \<subseteq> Y \<and> V \<subseteq> Z \<longrightarrow> V \<subseteq> X))" by blast text {* Trivial example of term synthesis: apparently hard for some provers! *} schematic_lemma "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X" by blast subsection {* Examples for the @{text blast} paper *} lemma "(\<Union>x \<in> C. f x \<union> g x) = \<Union>(f ` C) \<union> \<Union>(g ` C)" -- {* Union-image, called @{text Un_Union_image} in Main HOL *} by blast lemma "(\<Inter>x \<in> C. f x \<inter> g x) = \<Inter>(f ` C) \<inter> \<Inter>(g ` C)" -- {* Inter-image, called @{text Int_Inter_image} in Main HOL *} by blast lemma singleton_example_1: "\<And>S::'a set set. \<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y \<Longrightarrow> \<exists>z. S \<subseteq> {z}" by blast lemma singleton_example_2: "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}" -- {*Variant of the problem above. *} by blast lemma "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y" -- {* A unique fixpoint theorem --- @{text fast}/@{text best}/@{text meson} all fail. *} by metis subsection {* Cantor's Theorem: There is no surjection from a set to its powerset *} lemma cantor1: "\<not> (\<exists>f:: 'a \<Rightarrow> 'a set. \<forall>S. \<exists>x. f x = S)" -- {* Requires best-first search because it is undirectional. *} by best schematic_lemma "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f" -- {*This form displays the diagonal term. *} by best schematic_lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)" -- {* This form exploits the set constructs. *} by (rule notI, erule rangeE, best) schematic_lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)" -- {* Or just this! *} by best subsection {* The Schröder-Berstein Theorem *} lemma disj_lemma: "- (f ` X) = g ` (-X) \<Longrightarrow> f a = g b \<Longrightarrow> a \<in> X \<Longrightarrow> b \<in> X" by blast lemma surj_if_then_else: "-(f ` X) = g ` (-X) \<Longrightarrow> surj (\<lambda>z. if z \<in> X then f z else g z)" by (simp add: surj_def) blast lemma bij_if_then_else: "inj_on f X \<Longrightarrow> inj_on g (-X) \<Longrightarrow> -(f ` X) = g ` (-X) \<Longrightarrow> h = (\<lambda>z. if z \<in> X then f z else g z) \<Longrightarrow> inj h \<and> surj h" apply (unfold inj_on_def) apply (simp add: surj_if_then_else) apply (blast dest: disj_lemma sym) done lemma decomposition: "\<exists>X. X = - (g ` (- (f ` X)))" apply (rule exI) apply (rule lfp_unfold) apply (rule monoI, blast) done theorem Schroeder_Bernstein: "inj (f :: 'a \<Rightarrow> 'b) \<Longrightarrow> inj (g :: 'b \<Rightarrow> 'a) \<Longrightarrow> \<exists>h:: 'a \<Rightarrow> 'b. inj h \<and> surj h" apply (rule decomposition [where f=f and g=g, THEN exE]) apply (rule_tac x = "(\<lambda>z. if z \<in> x then f z else inv g z)" in exI) --{*The term above can be synthesized by a sufficiently detailed proof.*} apply (rule bij_if_then_else) apply (rule_tac [4] refl) apply (rule_tac [2] inj_on_inv_into) apply (erule subset_inj_on [OF _ subset_UNIV]) apply blast apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric]) done subsection {* A simple party theorem *} text{* \emph{At any party there are two people who know the same number of people}. Provided the party consists of at least two people and the knows relation is symmetric. Knowing yourself does not count --- otherwise knows needs to be reflexive. (From Freek Wiedijk's talk at TPHOLs 2007.) *} lemma equal_number_of_acquaintances: assumes "Domain R <= A" and "sym R" and "card A \<ge> 2" shows "\<not> inj_on (%a. card(R `` {a} - {a})) A" proof - let ?N = "%a. card(R `` {a} - {a})" let ?n = "card A" have "finite A" using `card A \<ge> 2` by(auto intro:ccontr) have 0: "R `` A <= A" using `sym R` `Domain R <= A` unfolding Domain_unfold sym_def by blast have h: "ALL a:A. R `` {a} <= A" using 0 by blast hence 1: "ALL a:A. finite(R `` {a})" using `finite A` by(blast intro: finite_subset) have sub: "?N ` A <= {0..<?n}" proof - have "ALL a:A. R `` {a} - {a} < A" using h by blast thus ?thesis using psubset_card_mono[OF `finite A`] by auto qed show "~ inj_on ?N A" (is "~ ?I") proof assume ?I hence "?n = card(?N ` A)" by(rule card_image[symmetric]) with sub `finite A` have 2[simp]: "?N ` A = {0..<?n}" using subset_card_intvl_is_intvl[of _ 0] by(auto) have "0 : ?N ` A" and "?n - 1 : ?N ` A" using `card A \<ge> 2` by simp+ then obtain a b where ab: "a:A" "b:A" and Na: "?N a = 0" and Nb: "?N b = ?n - 1" by (auto simp del: 2) have "a \<noteq> b" using Na Nb `card A \<ge> 2` by auto have "R `` {a} - {a} = {}" by (metis 1 Na ab card_eq_0_iff finite_Diff) hence "b \<notin> R `` {a}" using `a\<noteq>b` by blast hence "a \<notin> R `` {b}" by (metis Image_singleton_iff assms(2) sym_def) hence 3: "R `` {b} - {b} <= A - {a,b}" using 0 ab by blast have 4: "finite (A - {a,b})" using `finite A` by simp have "?N b <= ?n - 2" using ab `a\<noteq>b` `finite A` card_mono[OF 4 3] by simp then show False using Nb `card A \<ge> 2` by arith qed qed text {* From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages 293-314. Isabelle can prove the easy examples without any special mechanisms, but it can't prove the hard ones. *} lemma "\<exists>A. (\<forall>x \<in> A. x \<le> (0::int))" -- {* Example 1, page 295. *} by force lemma "D \<in> F \<Longrightarrow> \<exists>G. \<forall>A \<in> G. \<exists>B \<in> F. A \<subseteq> B" -- {* Example 2. *} by force lemma "P a \<Longrightarrow> \<exists>A. (\<forall>x \<in> A. P x) \<and> (\<exists>y. y \<in> A)" -- {* Example 3. *} by force lemma "a < b \<and> b < (c::int) \<Longrightarrow> \<exists>A. a \<notin> A \<and> b \<in> A \<and> c \<notin> A" -- {* Example 4. *} by auto --{*slow*} lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" -- {*Example 5, page 298. *} by force lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A" -- {* Example 6. *} by force lemma "\<exists>A. a \<notin> A" -- {* Example 7. *} by force lemma "(\<forall>u v. u < (0::int) \<longrightarrow> u \<noteq> abs v) \<longrightarrow> (\<exists>A::int set. -2 \<in> A & (\<forall>y. abs y \<notin> A))" -- {* Example 8 needs a small hint. *} by force -- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *} text {* Example 9 omitted (requires the reals). *} text {* The paper has no Example 10! *} lemma "(\<forall>A. 0 \<in> A \<and> (\<forall>x \<in> A. Suc x \<in> A) \<longrightarrow> n \<in> A) \<and> P 0 \<and> (\<forall>x. P x \<longrightarrow> P (Suc x)) \<longrightarrow> P n" -- {* Example 11: needs a hint. *} by(metis nat.induct) lemma "(\<forall>A. (0, 0) \<in> A \<and> (\<forall>x y. (x, y) \<in> A \<longrightarrow> (Suc x, Suc y) \<in> A) \<longrightarrow> (n, m) \<in> A) \<and> P n \<longrightarrow> P m" -- {* Example 12. *} by auto lemma "(\<forall>x. (\<exists>u. x = 2 * u) = (\<not> (\<exists>v. Suc x = 2 * v))) \<longrightarrow> (\<exists>A. \<forall>x. (x \<in> A) = (Suc x \<notin> A))" -- {* Example EO1: typo in article, and with the obvious fix it seems to require arithmetic reasoning. *} apply clarify apply (rule_tac x = "{x. \<exists>u. x = 2 * u}" in exI, auto) apply metis+ done end