removed unused "def_theory" markup (stemming from be49c660ebbf), superseded e.g. by Document_Info.theory_by_file();
(* Title: Pure/General/name_space.ML
Author: Markus Wenzel, TU Muenchen
Generic name spaces with declared and hidden entries; no support for
absolute addressing.
*)
type xstring = string; (*external names*)
signature NAME_SPACE =
sig
type entry =
{concealed: bool,
group: serial option,
theory_long_name: string,
pos: Position.T,
serial: serial}
type T
val empty: string -> T
val kind_of: T -> string
val markup: T -> string -> Markup.T
val markup_def: T -> string -> Markup.T
val get_names: T -> string list
val the_entry: T -> string -> entry
val the_entry_theory_name: T -> string -> string
val entry_ord: T -> string ord
val is_concealed: T -> string -> bool
val intern: T -> xstring -> string
val names_long: bool Config.T
val names_short: bool Config.T
val names_unique: bool Config.T
val extern: Proof.context -> T -> string -> xstring
val extern_ord: Proof.context -> T -> string ord
val extern_shortest: Proof.context -> T -> string -> xstring
val markup_extern: Proof.context -> T -> string -> Markup.T * xstring
val pretty: Proof.context -> T -> string -> Pretty.T
val completion: Context.generic -> T -> (string -> bool) -> xstring * Position.T -> Completion.T
val merge: T * T -> T
type naming
val get_scopes: naming -> Binding.scope list
val get_scope: naming -> Binding.scope option
val new_scope: naming -> Binding.scope * naming
val restricted: bool -> Position.T -> naming -> naming
val private_scope: Binding.scope -> naming -> naming
val private: Position.T -> naming -> naming
val qualified_scope: Binding.scope -> naming -> naming
val qualified: Position.T -> naming -> naming
val concealed: naming -> naming
val get_group: naming -> serial option
val set_group: serial option -> naming -> naming
val set_theory_long_name: string -> naming -> naming
val new_group: naming -> naming
val reset_group: naming -> naming
val add_path: string -> naming -> naming
val root_path: naming -> naming
val parent_path: naming -> naming
val mandatory_path: string -> naming -> naming
val qualified_path: bool -> binding -> naming -> naming
val global_naming: naming
val local_naming: naming
val transform_naming: naming -> naming -> naming
val transform_binding: naming -> binding -> binding
val full_name: naming -> binding -> string
val base_name: binding -> string
val hide: bool -> string -> T -> T
val alias: naming -> binding -> string -> T -> T
val naming_of: Context.generic -> naming
val map_naming: (naming -> naming) -> Context.generic -> Context.generic
val declared: T -> string -> bool
val declare: Context.generic -> bool -> binding -> T -> string * T
type 'a table
val change_base: bool -> 'a table -> 'a table
val change_ignore: 'a table -> 'a table
val space_of_table: 'a table -> T
val check_reports: Context.generic -> 'a table ->
xstring * Position.T list -> (string * Position.report list) * 'a
val check: Context.generic -> 'a table -> xstring * Position.T -> string * 'a
val defined: 'a table -> string -> bool
val lookup: 'a table -> string -> 'a option
val lookup_key: 'a table -> string -> (string * 'a) option
val get: 'a table -> string -> 'a
val define: Context.generic -> bool -> binding * 'a -> 'a table -> string * 'a table
val alias_table: naming -> binding -> string -> 'a table -> 'a table
val hide_table: bool -> string -> 'a table -> 'a table
val del_table: string -> 'a table -> 'a table
val map_table_entry: string -> ('a -> 'a) -> 'a table -> 'a table
val fold_table: (string * 'a -> 'b -> 'b) -> 'a table -> 'b -> 'b
val dest_table: 'a table -> (string * 'a) list
val empty_table: string -> 'a table
val merge_tables: 'a table * 'a table -> 'a table
val join_tables: (string -> 'a * 'a -> 'a) (*exception Change_Table.SAME*) ->
'a table * 'a table -> 'a table
val extern_entries: bool -> Proof.context -> T -> (string * 'a) list ->
((string * xstring) * 'a) list
val markup_entries: bool -> Proof.context -> T -> (string * 'a) list ->
((Markup.T * xstring) * 'a) list
val extern_table: bool -> Proof.context -> 'a table -> ((string * xstring) * 'a) list
val markup_table: bool -> Proof.context -> 'a table -> ((Markup.T * xstring) * 'a) list
end;
structure Name_Space: NAME_SPACE =
struct
(** name spaces **)
(* datatype entry *)
type entry =
{concealed: bool,
group: serial option,
theory_long_name: string,
pos: Position.T,
serial: serial};
fun entry_markup def kind (name, {pos, theory_long_name, serial, ...}: entry) =
Position.make_entity_markup def serial kind (name, pos);
fun print_entry_ref kind (name, entry) =
quote (Markup.markup (entry_markup {def = false} kind (name, entry)) name);
fun err_dup kind entry1 entry2 pos =
error ("Duplicate " ^ plain_words kind ^ " declaration " ^
print_entry_ref kind entry1 ^ " vs. " ^ print_entry_ref kind entry2 ^ Position.here pos);
(* internal names *)
type internals = (string list * string list) Change_Table.T; (*xname -> visible, hidden*)
fun map_internals f xname : internals -> internals =
Change_Table.map_default (xname, ([], [])) f;
val del_name = map_internals o apfst o remove (op =);
fun del_name_extra name =
map_internals (apfst (fn [] => [] | x :: xs => x :: remove (op =) name xs));
val add_name = map_internals o apfst o update (op =);
fun hide_name name = map_internals (apsnd (update (op =) name)) name;
(* external accesses *)
type accesses = (xstring list * xstring list); (*input / output fragments*)
type entries = (accesses * entry) Change_Table.T; (*name -> accesses, entry*)
(* datatype T *)
datatype T = Name_Space of {kind: string, internals: internals, entries: entries};
fun make_name_space (kind, internals, entries) =
Name_Space {kind = kind, internals = internals, entries = entries};
fun map_name_space f (Name_Space {kind = kind, internals = internals, entries = entries}) =
make_name_space (f (kind, internals, entries));
fun change_base_space begin = map_name_space (fn (kind, internals, entries) =>
(kind, Change_Table.change_base begin internals, Change_Table.change_base begin entries));
val change_ignore_space = map_name_space (fn (kind, internals, entries) =>
(kind, Change_Table.change_ignore internals, Change_Table.change_ignore entries));
fun empty kind = make_name_space (kind, Change_Table.empty, Change_Table.empty);
fun kind_of (Name_Space {kind, ...}) = kind;
fun gen_markup def (Name_Space {kind, entries, ...}) name =
(case Change_Table.lookup entries name of
NONE => Markup.intensify
| SOME (_, entry) => entry_markup def kind (name, entry));
val markup = gen_markup {def = false};
val markup_def = gen_markup {def = true};
fun undefined (space as Name_Space {kind, entries, ...}) bad =
let
val (prfx, sfx) =
(case Long_Name.dest_hidden bad of
SOME name =>
if Change_Table.defined entries name
then ("Inaccessible", Markup.markup (markup space name) (quote name))
else ("Undefined", quote name)
| NONE => ("Undefined", quote bad));
in prfx ^ " " ^ plain_words kind ^ ": " ^ sfx end;
fun get_names (Name_Space {entries, ...}) =
Change_Table.fold (cons o #1) entries [];
fun the_entry (space as Name_Space {entries, ...}) name =
(case Change_Table.lookup entries name of
NONE => error (undefined space name)
| SOME (_, entry) => entry);
fun the_entry_theory_name space name =
Long_Name.base_name (#theory_long_name (the_entry space name));
fun entry_ord space = int_ord o apply2 (#serial o the_entry space);
fun is_concealed space name =
#concealed (the_entry space name) handle ERROR _ => false;
(* intern *)
fun intern' (Name_Space {internals, ...}) xname =
(case the_default ([], []) (Change_Table.lookup internals xname) of
([name], _) => (name, true)
| (name :: _, _) => (name, false)
| ([], []) => (Long_Name.hidden xname, true)
| ([], name' :: _) => (Long_Name.hidden name', true));
val intern = #1 oo intern';
fun get_accesses (Name_Space {entries, ...}) name =
(case Change_Table.lookup entries name of
NONE => ([], [])
| SOME (accesses, _) => accesses);
fun is_valid_access (Name_Space {internals, ...}) name xname =
(case Change_Table.lookup internals xname of
SOME (name' :: _, _) => name = name'
| _ => false);
(* extern *)
val names_long = Config.declare_option_bool ("names_long", \<^here>);
val names_short = Config.declare_option_bool ("names_short", \<^here>);
val names_unique = Config.declare_option_bool ("names_unique", \<^here>);
fun extern ctxt space name =
let
val names_long = Config.get ctxt names_long;
val names_short = Config.get ctxt names_short;
val names_unique = Config.get ctxt names_unique;
fun valid require_unique xname =
let val (name', is_unique) = intern' space xname
in name = name' andalso (not require_unique orelse is_unique) end;
fun ext [] = if valid false name then name else Long_Name.hidden name
| ext (nm :: nms) = if valid names_unique nm then nm else ext nms;
in
if names_long then name
else if names_short then Long_Name.base_name name
else ext (#2 (get_accesses space name))
end;
fun extern_ord ctxt space = string_ord o apply2 (extern ctxt space);
fun extern_shortest ctxt =
extern
(ctxt
|> Config.put names_long false
|> Config.put names_short false
|> Config.put names_unique false);
fun markup_extern ctxt space name = (markup space name, extern ctxt space name);
fun pretty ctxt space name = Pretty.mark_str (markup_extern ctxt space name);
(* completion *)
fun completion context space pred (xname, pos) =
Completion.make (xname, pos) (fn completed =>
let
fun result_ord ((pri1, (xname1, (_, name1))), (pri2, (xname2, (_, name2)))) =
(case int_ord (pri2, pri1) of
EQUAL =>
(case bool_ord (apply2 (is_some o Long_Name.dest_local) (name2, name1)) of
EQUAL =>
(case int_ord (apply2 Long_Name.qualification (xname1, xname2)) of
EQUAL => string_ord (xname1, xname2)
| ord => ord)
| ord => ord)
| ord => ord);
val Name_Space {kind, internals, ...} = space;
val ext = extern_shortest (Context.proof_of context) space;
val full = Name.clean xname = "";
fun complete xname' name =
if (completed xname' orelse exists completed (Long_Name.explode xname')) andalso
not (is_concealed space name) andalso pred name
then
let
val xname'' = ext name;
val pri = (if xname' = xname'' then 1 else 0) + (if completed xname' then 1 else 0);
in
if xname' <> xname'' andalso full then I
else cons (pri, (xname', (kind, name)))
end
else I;
in
Change_Table.fold (fn (xname', (name :: _, _)) => complete xname' name | _ => I) internals []
|> sort_distinct result_ord
|> map #2
end);
(* merge *)
fun merge
(Name_Space {kind = kind1, internals = internals1, entries = entries1},
Name_Space {kind = kind2, internals = internals2, entries = entries2}) =
let
val kind' =
if kind1 = kind2 then kind1
else error ("Attempt to merge different kinds of name spaces " ^
quote kind1 ^ " vs. " ^ quote kind2);
val internals' = (internals1, internals2) |> Change_Table.join
(K (fn ((names1, names1'), (names2, names2')) =>
if pointer_eq (names1, names2) andalso pointer_eq (names1', names2')
then raise Change_Table.SAME
else (Library.merge (op =) (names1, names2), Library.merge (op =) (names1', names2'))));
val entries' = (entries1, entries2) |> Change_Table.join
(fn name => fn ((_, entry1), (_, entry2)) =>
if #serial entry1 = #serial entry2 then raise Change_Table.SAME
else err_dup kind' (name, entry1) (name, entry2) Position.none);
in make_name_space (kind', internals', entries') end;
(** naming context **)
(* datatype naming *)
datatype naming = Naming of
{scopes: Binding.scope list,
restricted: (bool * Binding.scope) option,
concealed: bool,
group: serial option,
theory_long_name: string,
path: (string * bool) list};
fun make_naming (scopes, restricted, concealed, group, theory_long_name, path) =
Naming {scopes = scopes, restricted = restricted, concealed = concealed,
group = group, theory_long_name = theory_long_name, path = path};
fun map_naming f (Naming {scopes, restricted, concealed, group, theory_long_name, path}) =
make_naming (f (scopes, restricted, concealed, group, theory_long_name, path));
(* scope and access restriction *)
fun get_scopes (Naming {scopes, ...}) = scopes;
val get_scope = try hd o get_scopes;
fun new_scope naming =
let
val scope = Binding.new_scope ();
val naming' =
naming |> map_naming (fn (scopes, restricted, concealed, group, theory_long_name, path) =>
(scope :: scopes, restricted, concealed, group, theory_long_name, path));
in (scope, naming') end;
fun restricted_scope strict scope =
map_naming (fn (scopes, _, concealed, group, theory_long_name, path) =>
(scopes, SOME (strict, scope), concealed, group, theory_long_name, path));
fun restricted strict pos naming =
(case get_scope naming of
SOME scope => restricted_scope strict scope naming
| NONE => error ("Missing local scope -- cannot restrict name space accesses" ^ Position.here pos));
val private_scope = restricted_scope true;
val private = restricted true;
val qualified_scope = restricted_scope false;
val qualified = restricted false;
val concealed = map_naming (fn (scopes, restricted, _, group, theory_long_name, path) =>
(scopes, restricted, true, group, theory_long_name, path));
(* additional structural info *)
fun set_theory_long_name theory_long_name =
map_naming (fn (scopes, restricted, concealed, group, _, path) =>
(scopes, restricted, concealed, group, theory_long_name, path));
fun get_group (Naming {group, ...}) = group;
fun set_group group =
map_naming (fn (scopes, restricted, concealed, _, theory_long_name, path) =>
(scopes, restricted, concealed, group, theory_long_name, path));
fun new_group naming = set_group (SOME (serial ())) naming;
val reset_group = set_group NONE;
(* name entry path *)
fun get_path (Naming {path, ...}) = path;
fun map_path f =
map_naming (fn (scopes, restricted, concealed, group, theory_long_name, path) =>
(scopes, restricted, concealed, group, theory_long_name, f path));
fun add_path elems = map_path (fn path => path @ [(elems, false)]);
val root_path = map_path (fn _ => []);
val parent_path = map_path (perhaps (try (#1 o split_last)));
fun mandatory_path elems = map_path (fn path => path @ [(elems, true)]);
fun qualified_path mandatory binding = map_path (fn path =>
path @ Binding.path_of (Binding.qualify_name mandatory binding ""));
val global_naming = make_naming ([], NONE, false, NONE, "", []);
val local_naming = global_naming |> add_path Long_Name.localN;
(* transform *)
fun transform_naming (Naming {restricted = restricted', concealed = concealed', ...}) =
(case restricted' of
SOME (strict, scope) => restricted_scope strict scope
| NONE => I) #>
concealed' ? concealed;
fun transform_binding (Naming {restricted, concealed, ...}) =
Binding.restricted restricted #>
concealed ? Binding.concealed;
(* full name *)
fun name_spec naming binding =
Binding.name_spec (get_scopes naming) (get_path naming) (transform_binding naming binding);
fun full_name naming =
name_spec naming #> #spec #> map #1 #> Long_Name.implode;
val base_name = full_name global_naming #> Long_Name.base_name;
(* accesses *)
fun mandatory xs = map_filter (fn (x, true) => SOME x | _ => NONE) xs;
fun mandatory_prefixes xs = mandatory xs :: mandatory_prefixes1 xs
and mandatory_prefixes1 [] = []
| mandatory_prefixes1 ((x, true) :: xs) = map (cons x) (mandatory_prefixes1 xs)
| mandatory_prefixes1 ((x, false) :: xs) = map (cons x) (mandatory_prefixes xs);
fun mandatory_suffixes xs = map rev (mandatory_prefixes (rev xs));
fun make_accesses naming binding =
(case name_spec naming binding of
{restriction = SOME true, ...} => ([], [])
| {restriction, spec, ...} =>
let
val restrict = is_some restriction ? filter (fn [_] => false | _ => true);
val sfxs = restrict (mandatory_suffixes spec);
val pfxs = restrict (mandatory_prefixes spec);
in apply2 (map Long_Name.implode) (sfxs @ pfxs, sfxs) end);
(* hide *)
fun hide fully name space =
space |> map_name_space (fn (kind, internals, entries) =>
let
val _ = the_entry space name;
val (accs, accs') = get_accesses space name;
val xnames = filter (is_valid_access space name) accs;
val internals' = internals
|> hide_name name
|> fold (del_name name)
(if fully then xnames else inter (op =) [Long_Name.base_name name] xnames)
|> fold (del_name_extra name) accs';
in (kind, internals', entries) end);
(* alias *)
fun alias naming binding name space =
space |> map_name_space (fn (kind, internals, entries) =>
let
val _ = the_entry space name;
val (more_accs, more_accs') = make_accesses naming binding;
val internals' = internals |> fold (add_name name) more_accs;
val entries' = entries
|> Change_Table.map_entry name (apfst (fn (accs, accs') =>
(fold_rev (update op =) more_accs accs,
fold_rev (update op =) more_accs' accs')))
in (kind, internals', entries') end);
(** context naming **)
structure Data_Args =
struct
type T = naming;
val empty = global_naming;
fun init _ = local_naming;
val merge = #1;
end;
structure Global_Naming = Theory_Data(Data_Args);
structure Local_Naming = Proof_Data(Data_Args);
fun naming_of (Context.Theory thy) = Global_Naming.get thy
| naming_of (Context.Proof ctxt) = Local_Naming.get ctxt;
fun map_naming f (Context.Theory thy) = Context.Theory (Global_Naming.map f thy)
| map_naming f (Context.Proof ctxt) = Context.Proof (Local_Naming.map f ctxt);
(** entry definition **)
(* declaration *)
fun declared (Name_Space {entries, ...}) = Change_Table.defined entries;
fun declare context strict binding space =
let
val naming = naming_of context;
val Naming {group, theory_long_name, ...} = naming;
val {concealed, spec, ...} = name_spec naming binding;
val accesses = make_accesses naming binding;
val name = Long_Name.implode (map fst spec);
val _ = name = "" andalso error (Binding.bad binding);
val (proper_pos, pos) = Position.default (Binding.pos_of binding);
val entry =
{concealed = concealed,
group = group,
theory_long_name = theory_long_name,
pos = pos,
serial = serial ()};
val space' =
space |> map_name_space (fn (kind, internals, entries) =>
let
val internals' = internals |> fold (add_name name) (#1 accesses);
val entries' =
(if strict then Change_Table.update_new else Change_Table.update)
(name, (accesses, entry)) entries
handle Change_Table.DUP dup =>
err_dup kind (dup, #2 (the (Change_Table.lookup entries dup)))
(name, entry) (#pos entry);
in (kind, internals', entries') end);
val _ =
if proper_pos andalso Context_Position.is_reported_generic context pos then
Position.report pos (entry_markup {def = true} (kind_of space) (name, entry))
else ();
in (name, space') end;
(* definition in symbol table *)
datatype 'a table = Table of T * 'a Change_Table.T;
fun change_base begin (Table (space, tab)) =
Table (change_base_space begin space, Change_Table.change_base begin tab);
fun change_ignore (Table (space, tab)) =
Table (change_ignore_space space, Change_Table.change_ignore tab);
fun space_of_table (Table (space, _)) = space;
fun check_reports context (Table (space, tab)) (xname, ps) =
let val name = intern space xname in
(case Change_Table.lookup tab name of
SOME x =>
let
val reports =
filter (Context_Position.is_reported_generic context) ps
|> map (fn pos => (pos, markup space name));
in ((name, reports), x) end
| NONE =>
error (undefined space name ^ Position.here_list ps ^
Completion.markup_report
(map (fn pos => completion context space (K true) (xname, pos)) ps)))
end;
fun check context table (xname, pos) =
let
val ((name, reports), x) = check_reports context table (xname, [pos]);
val _ = Context_Position.reports_generic context reports;
in (name, x) end;
fun defined (Table (_, tab)) name = Change_Table.defined tab name;
fun lookup (Table (_, tab)) name = Change_Table.lookup tab name;
fun lookup_key (Table (_, tab)) name = Change_Table.lookup_key tab name;
fun get table name =
(case lookup_key table name of
SOME (_, x) => x
| NONE => error (undefined (space_of_table table) name));
fun define context strict (binding, x) (Table (space, tab)) =
let
val (name, space') = declare context strict binding space;
val tab' = Change_Table.update (name, x) tab;
in (name, Table (space', tab')) end;
(* derived table operations *)
fun alias_table naming binding name (Table (space, tab)) =
Table (alias naming binding name space, tab);
fun hide_table fully name (Table (space, tab)) =
Table (hide fully name space, tab);
fun del_table name (Table (space, tab)) =
let
val space' = hide true name space handle ERROR _ => space;
val tab' = Change_Table.delete_safe name tab;
in Table (space', tab') end;
fun map_table_entry name f (Table (space, tab)) =
Table (space, Change_Table.map_entry name f tab);
fun fold_table f (Table (_, tab)) = Change_Table.fold f tab;
fun dest_table (Table (_, tab)) = Change_Table.dest tab;
fun empty_table kind = Table (empty kind, Change_Table.empty);
fun merge_tables (Table (space1, tab1), Table (space2, tab2)) =
Table (merge (space1, space2), Change_Table.merge (K true) (tab1, tab2));
fun join_tables f (Table (space1, tab1), Table (space2, tab2)) =
Table (merge (space1, space2), Change_Table.join f (tab1, tab2));
(* present table content *)
fun extern_entries verbose ctxt space entries =
fold (fn (name, x) =>
(verbose orelse not (is_concealed space name)) ?
cons ((name, extern ctxt space name), x)) entries []
|> sort_by (#2 o #1);
fun markup_entries verbose ctxt space entries =
extern_entries verbose ctxt space entries
|> map (fn ((name, xname), x) => ((markup space name, xname), x));
fun extern_table verbose ctxt (Table (space, tab)) =
extern_entries verbose ctxt space (Change_Table.dest tab);
fun markup_table verbose ctxt (Table (space, tab)) =
markup_entries verbose ctxt space (Change_Table.dest tab);
end;