(* Title: HOL/Arith.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Arithmetic operators and their definitions
*)
Arith = Nat +
instance
nat :: {plus, minus, times}
consts
pred :: nat => nat
div, mod :: [nat, nat] => nat (infixl 70)
defs
pred_def "pred(m) == case m of 0 => 0 | Suc n => n"
mod_def "m mod n == wfrec (trancl pred_nat)
(%f j. if j<n then j else f (j-n)) m"
div_def "m div n == wfrec (trancl pred_nat)
(%f j. if j<n then 0 else Suc (f (j-n))) m"
primrec "op +" nat
"0 + n = n"
"Suc m + n = Suc(m + n)"
primrec "op -" nat
diff_0 "m - 0 = m"
diff_Suc "m - Suc n = pred(m - n)"
primrec "op *" nat
"0 * n = 0"
"Suc m * n = n + (m * n)"
end