split off metric spaces part of Function_Topology: subsequent theories Product_Topology, T1_Spaces, Lindelof_Spaces are purely topological
(* Title: HOL/Analysis/Vitali_Covering_Theorem.thy
Authors: LC Paulson, based on material from HOL Light
*)
section \<open>Vitali Covering Theorem and an Application to Negligibility\<close>
theory Vitali_Covering_Theorem
imports Equivalence_Lebesgue_Henstock_Integration "HOL-Library.Permutations"
begin
lemma stretch_Galois:
fixes x :: "real^'n"
shows "(\<And>k. m k \<noteq> 0) \<Longrightarrow> ((y = (\<chi> k. m k * x$k)) \<longleftrightarrow> (\<chi> k. y$k / m k) = x)"
by auto
lemma lambda_swap_Galois:
"(x = (\<chi> i. y $ Fun.swap m n id i) \<longleftrightarrow> (\<chi> i. x $ Fun.swap m n id i) = y)"
by (auto; simp add: pointfree_idE vec_eq_iff)
lemma lambda_add_Galois:
fixes x :: "real^'n"
shows "m \<noteq> n \<Longrightarrow> (x = (\<chi> i. if i = m then y$m + y$n else y$i) \<longleftrightarrow> (\<chi> i. if i = m then x$m - x$n else x$i) = y)"
by (safe; simp add: vec_eq_iff)
lemma Vitali_covering_lemma_cballs_balls:
fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> B"
obtains C where "countable C" "C \<subseteq> K"
"pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
"\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and>
\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
proof (cases "K = {}")
case True
with that show ?thesis
by auto
next
case False
then have "B > 0"
using assms less_le_trans by auto
have rgt0[simp]: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i"
using assms by auto
let ?djnt = "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j)))"
have "\<exists>C. \<forall>n. (C n \<subseteq> K \<and>
(\<forall>i \<in> C n. B/2 ^ n \<le> r i) \<and> ?djnt (C n) \<and>
(\<forall>i \<in> K. B/2 ^ n < r i
\<longrightarrow> (\<exists>j. j \<in> C n \<and>
\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)))) \<and> (C n \<subseteq> C(Suc n))"
proof (rule dependent_nat_choice, safe)
fix C n
define D where "D \<equiv> {i \<in> K. B/2 ^ Suc n < r i \<and> (\<forall>j\<in>C. disjnt (cball(a i)(r i)) (cball (a j) (r j)))}"
let ?cover_ar = "\<lambda>i j. \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
assume "C \<subseteq> K"
and Ble: "\<forall>i\<in>C. B/2 ^ n \<le> r i"
and djntC: "?djnt C"
and cov_n: "\<forall>i\<in>K. B/2 ^ n < r i \<longrightarrow> (\<exists>j. j \<in> C \<and> ?cover_ar i j)"
have *: "\<forall>C\<in>chains {C. C \<subseteq> D \<and> ?djnt C}. \<Union>C \<in> {C. C \<subseteq> D \<and> ?djnt C}"
proof (clarsimp simp: chains_def)
fix C
assume C: "C \<subseteq> {C. C \<subseteq> D \<and> ?djnt C}" and "chain\<^sub>\<subseteq> C"
show "\<Union>C \<subseteq> D \<and> ?djnt (\<Union>C)"
unfolding pairwise_def
proof (intro ballI conjI impI)
show "\<Union>C \<subseteq> D"
using C by blast
next
fix x y
assume "x \<in> \<Union>C" and "y \<in> \<Union>C" and "x \<noteq> y"
then obtain X Y where XY: "x \<in> X" "X \<in> C" "y \<in> Y" "Y \<in> C"
by blast
then consider "X \<subseteq> Y" | "Y \<subseteq> X"
by (meson \<open>chain\<^sub>\<subseteq> C\<close> chain_subset_def)
then show "disjnt (cball (a x) (r x)) (cball (a y) (r y))"
proof cases
case 1
with C XY \<open>x \<noteq> y\<close> show ?thesis
unfolding pairwise_def by blast
next
case 2
with C XY \<open>x \<noteq> y\<close> show ?thesis
unfolding pairwise_def by blast
qed
qed
qed
obtain E where "E \<subseteq> D" and djntE: "?djnt E" and maximalE: "\<And>X. \<lbrakk>X \<subseteq> D; ?djnt X; E \<subseteq> X\<rbrakk> \<Longrightarrow> X = E"
using Zorn_Lemma [OF *] by safe blast
show "\<exists>L. (L \<subseteq> K \<and>
(\<forall>i\<in>L. B/2 ^ Suc n \<le> r i) \<and> ?djnt L \<and>
(\<forall>i\<in>K. B/2 ^ Suc n < r i \<longrightarrow> (\<exists>j. j \<in> L \<and> ?cover_ar i j))) \<and> C \<subseteq> L"
proof (intro exI conjI ballI)
show "C \<union> E \<subseteq> K"
using D_def \<open>C \<subseteq> K\<close> \<open>E \<subseteq> D\<close> by blast
show "B/2 ^ Suc n \<le> r i" if i: "i \<in> C \<union> E" for i
using i
proof
assume "i \<in> C"
have "B/2 ^ Suc n \<le> B/2 ^ n"
using \<open>B > 0\<close> by (simp add: field_split_simps)
also have "\<dots> \<le> r i"
using Ble \<open>i \<in> C\<close> by blast
finally show ?thesis .
qed (use D_def \<open>E \<subseteq> D\<close> in auto)
show "?djnt (C \<union> E)"
using D_def \<open>C \<subseteq> K\<close> \<open>E \<subseteq> D\<close> djntC djntE
unfolding pairwise_def disjnt_def by blast
next
fix i
assume "i \<in> K"
show "B/2 ^ Suc n < r i \<longrightarrow> (\<exists>j. j \<in> C \<union> E \<and> ?cover_ar i j)"
proof (cases "r i \<le> B/2^n")
case False
then show ?thesis
using cov_n \<open>i \<in> K\<close> by auto
next
case True
have "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
if less: "B/2 ^ Suc n < r i" and j: "j \<in> C \<union> E"
and nondis: "\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j))" for j
proof -
obtain x where x: "dist (a i) x \<le> r i" "dist (a j) x \<le> r j"
using nondis by (force simp: disjnt_def)
have "dist (a i) (a j) \<le> dist (a i) x + dist x (a j)"
by (simp add: dist_triangle)
also have "\<dots> \<le> r i + r j"
by (metis add_mono_thms_linordered_semiring(1) dist_commute x)
finally have aij: "dist (a i) (a j) + r i < 5 * r j" if "r i < 2 * r j"
using that by auto
show ?thesis
using j
proof
assume "j \<in> C"
have "B/2^n < 2 * r j"
using Ble True \<open>j \<in> C\<close> less by auto
with aij True show "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
by (simp add: cball_subset_ball_iff)
next
assume "j \<in> E"
then have "B/2 ^ n < 2 * r j"
using D_def \<open>E \<subseteq> D\<close> by auto
with True have "r i < 2 * r j"
by auto
with aij show "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
by (simp add: cball_subset_ball_iff)
qed
qed
moreover have "\<exists>j. j \<in> C \<union> E \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j))"
if "B/2 ^ Suc n < r i"
proof (rule classical)
assume NON: "\<not> ?thesis"
show ?thesis
proof (cases "i \<in> D")
case True
have "insert i E = E"
proof (rule maximalE)
show "insert i E \<subseteq> D"
by (simp add: True \<open>E \<subseteq> D\<close>)
show "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) (insert i E)"
using False NON by (auto simp: pairwise_insert djntE disjnt_sym)
qed auto
then show ?thesis
using \<open>i \<in> K\<close> assms by fastforce
next
case False
with that show ?thesis
by (auto simp: D_def disjnt_def \<open>i \<in> K\<close>)
qed
qed
ultimately
show "B/2 ^ Suc n < r i \<longrightarrow>
(\<exists>j. j \<in> C \<union> E \<and>
\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j))"
by blast
qed
qed auto
qed (use assms in force)
then obtain F where FK: "\<And>n. F n \<subseteq> K"
and Fle: "\<And>n i. i \<in> F n \<Longrightarrow> B/2 ^ n \<le> r i"
and Fdjnt: "\<And>n. ?djnt (F n)"
and FF: "\<And>n i. \<lbrakk>i \<in> K; B/2 ^ n < r i\<rbrakk>
\<Longrightarrow> \<exists>j. j \<in> F n \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
and inc: "\<And>n. F n \<subseteq> F(Suc n)"
by (force simp: all_conj_distrib)
show thesis
proof
have *: "countable I"
if "I \<subseteq> K" and pw: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) I" for I
proof -
show ?thesis
proof (rule countable_image_inj_on [of "\<lambda>i. cball(a i)(r i)"])
show "countable ((\<lambda>i. cball (a i) (r i)) ` I)"
proof (rule countable_disjoint_nonempty_interior_subsets)
show "disjoint ((\<lambda>i. cball (a i) (r i)) ` I)"
by (auto simp: dest: pairwiseD [OF pw] intro: pairwise_imageI)
show "\<And>S. \<lbrakk>S \<in> (\<lambda>i. cball (a i) (r i)) ` I; interior S = {}\<rbrakk> \<Longrightarrow> S = {}"
using \<open>I \<subseteq> K\<close>
by (auto simp: not_less [symmetric])
qed
next
have "\<And>x y. \<lbrakk>x \<in> I; y \<in> I; a x = a y; r x = r y\<rbrakk> \<Longrightarrow> x = y"
using pw \<open>I \<subseteq> K\<close> assms
apply (clarsimp simp: pairwise_def disjnt_def)
by (metis assms centre_in_cball subsetD empty_iff inf.idem less_eq_real_def)
then show "inj_on (\<lambda>i. cball (a i) (r i)) I"
using \<open>I \<subseteq> K\<close> by (fastforce simp: inj_on_def cball_eq_cball_iff dest: assms)
qed
qed
show "(Union(range F)) \<subseteq> K"
using FK by blast
moreover show "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) (Union(range F))"
proof (rule pairwise_chain_Union)
show "chain\<^sub>\<subseteq> (range F)"
unfolding chain_subset_def by clarify (meson inc lift_Suc_mono_le linear subsetCE)
qed (use Fdjnt in blast)
ultimately show "countable (Union(range F))"
by (blast intro: *)
next
fix i assume "i \<in> K"
then obtain n where "(1/2) ^ n < r i / B"
using \<open>B > 0\<close> assms real_arch_pow_inv by fastforce
then have B2: "B/2 ^ n < r i"
using \<open>B > 0\<close> by (simp add: field_split_simps)
have "0 < r i" "r i \<le> B"
by (auto simp: \<open>i \<in> K\<close> assms)
show "\<exists>j. j \<in> (Union(range F)) \<and>
\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
using FF [OF \<open>i \<in> K\<close> B2] by auto
qed
qed
subsection\<open>Vitali covering theorem\<close>
lemma Vitali_covering_lemma_cballs:
fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
assumes S: "S \<subseteq> (\<Union>i\<in>K. cball (a i) (r i))"
and r: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> B"
obtains C where "countable C" "C \<subseteq> K"
"pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
"S \<subseteq> (\<Union>i\<in>C. cball (a i) (5 * r i))"
proof -
obtain C where C: "countable C" "C \<subseteq> K"
"pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
and cov: "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
by (rule Vitali_covering_lemma_cballs_balls [OF r, where a=a]) (blast intro: that)+
show ?thesis
proof
have "(\<Union>i\<in>K. cball (a i) (r i)) \<subseteq> (\<Union>i\<in>C. cball (a i) (5 * r i))"
using cov subset_iff by fastforce
with S show "S \<subseteq> (\<Union>i\<in>C. cball (a i) (5 * r i))"
by blast
qed (use C in auto)
qed
lemma Vitali_covering_lemma_balls:
fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
assumes S: "S \<subseteq> (\<Union>i\<in>K. ball (a i) (r i))"
and r: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> B"
obtains C where "countable C" "C \<subseteq> K"
"pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
"S \<subseteq> (\<Union>i\<in>C. ball (a i) (5 * r i))"
proof -
obtain C where C: "countable C" "C \<subseteq> K"
and pw: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
and cov: "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
by (rule Vitali_covering_lemma_cballs_balls [OF r, where a=a]) (blast intro: that)+
show ?thesis
proof
have "(\<Union>i\<in>K. ball (a i) (r i)) \<subseteq> (\<Union>i\<in>C. ball (a i) (5 * r i))"
using cov subset_iff
by clarsimp (meson less_imp_le mem_ball mem_cball subset_eq)
with S show "S \<subseteq> (\<Union>i\<in>C. ball (a i) (5 * r i))"
by blast
show "pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
using pw
by (clarsimp simp: pairwise_def) (meson ball_subset_cball disjnt_subset1 disjnt_subset2)
qed (use C in auto)
qed
theorem Vitali_covering_theorem_cballs:
fixes a :: "'a \<Rightarrow> 'n::euclidean_space"
assumes r: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i"
and S: "\<And>x d. \<lbrakk>x \<in> S; 0 < d\<rbrakk>
\<Longrightarrow> \<exists>i. i \<in> K \<and> x \<in> cball (a i) (r i) \<and> r i < d"
obtains C where "countable C" "C \<subseteq> K"
"pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
"negligible(S - (\<Union>i \<in> C. cball (a i) (r i)))"
proof -
let ?\<mu> = "measure lebesgue"
have *: "\<exists>C. countable C \<and> C \<subseteq> K \<and>
pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C \<and>
negligible(S - (\<Union>i \<in> C. cball (a i) (r i)))"
if r01: "\<And>i. i \<in> K \<Longrightarrow> 0 < r i \<and> r i \<le> 1"
and Sd: "\<And>x d. \<lbrakk>x \<in> S; 0 < d\<rbrakk> \<Longrightarrow> \<exists>i. i \<in> K \<and> x \<in> cball (a i) (r i) \<and> r i < d"
for K r and a :: "'a \<Rightarrow> 'n"
proof -
obtain C where C: "countable C" "C \<subseteq> K"
and pwC: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
and cov: "\<And>i. i \<in> K \<Longrightarrow> \<exists>j. j \<in> C \<and> \<not> disjnt (cball (a i) (r i)) (cball (a j) (r j)) \<and>
cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
by (rule Vitali_covering_lemma_cballs_balls [of K r 1 a]) (auto simp: r01)
have ar_injective: "\<And>x y. \<lbrakk>x \<in> C; y \<in> C; a x = a y; r x = r y\<rbrakk> \<Longrightarrow> x = y"
using \<open>C \<subseteq> K\<close> pwC cov
by (force simp: pairwise_def disjnt_def)
show ?thesis
proof (intro exI conjI)
show "negligible (S - (\<Union>i\<in>C. cball (a i) (r i)))"
proof (clarsimp simp: negligible_on_intervals [of "S-T" for T])
fix l u
show "negligible ((S - (\<Union>i\<in>C. cball (a i) (r i))) \<inter> cbox l u)"
unfolding negligible_outer_le
proof (intro allI impI)
fix e::real
assume "e > 0"
define D where "D \<equiv> {i \<in> C. \<not> disjnt (ball(a i) (5 * r i)) (cbox l u)}"
then have "D \<subseteq> C"
by auto
have "countable D"
unfolding D_def using \<open>countable C\<close> by simp
have UD: "(\<Union>i\<in>D. cball (a i) (r i)) \<in> lmeasurable"
proof (rule fmeasurableI2)
show "cbox (l - 6 *\<^sub>R One) (u + 6 *\<^sub>R One) \<in> lmeasurable"
by blast
have "y \<in> cbox (l - 6 *\<^sub>R One) (u + 6 *\<^sub>R One)"
if "i \<in> C" and x: "x \<in> cbox l u" and ai: "dist (a i) y \<le> r i" "dist (a i) x < 5 * r i"
for i x y
proof -
have d6: "dist y x < 6 * r i"
using dist_triangle3 [of y x "a i"] that by linarith
show ?thesis
proof (clarsimp simp: mem_box algebra_simps)
fix j::'n
assume j: "j \<in> Basis"
then have xyj: "\<bar>x \<bullet> j - y \<bullet> j\<bar> \<le> dist y x"
by (metis Basis_le_norm dist_commute dist_norm inner_diff_left)
have "l \<bullet> j \<le> x \<bullet> j"
using \<open>j \<in> Basis\<close> mem_box \<open>x \<in> cbox l u\<close> by blast
also have "\<dots> \<le> y \<bullet> j + 6 * r i"
using d6 xyj by (auto simp: algebra_simps)
also have "\<dots> \<le> y \<bullet> j + 6"
using r01 [of i] \<open>C \<subseteq> K\<close> \<open>i \<in> C\<close> by auto
finally have l: "l \<bullet> j \<le> y \<bullet> j + 6" .
have "y \<bullet> j \<le> x \<bullet> j + 6 * r i"
using d6 xyj by (auto simp: algebra_simps)
also have "\<dots> \<le> u \<bullet> j + 6 * r i"
using j x by (auto simp: mem_box)
also have "\<dots> \<le> u \<bullet> j + 6"
using r01 [of i] \<open>C \<subseteq> K\<close> \<open>i \<in> C\<close> by auto
finally have u: "y \<bullet> j \<le> u \<bullet> j + 6" .
show "l \<bullet> j \<le> y \<bullet> j + 6 \<and> y \<bullet> j \<le> u \<bullet> j + 6"
using l u by blast
qed
qed
then show "(\<Union>i\<in>D. cball (a i) (r i)) \<subseteq> cbox (l - 6 *\<^sub>R One) (u + 6 *\<^sub>R One)"
by (force simp: D_def disjnt_def)
show "(\<Union>i\<in>D. cball (a i) (r i)) \<in> sets lebesgue"
using \<open>countable D\<close> by auto
qed
obtain D1 where "D1 \<subseteq> D" "finite D1"
and measD1: "?\<mu> (\<Union>i\<in>D. cball (a i) (r i)) - e / 5 ^ DIM('n) < ?\<mu> (\<Union>i\<in>D1. cball (a i) (r i))"
proof (rule measure_countable_Union_approachable [where e = "e / 5 ^ (DIM('n))"])
show "countable ((\<lambda>i. cball (a i) (r i)) ` D)"
using \<open>countable D\<close> by auto
show "\<And>d. d \<in> (\<lambda>i. cball (a i) (r i)) ` D \<Longrightarrow> d \<in> lmeasurable"
by auto
show "\<And>D'. \<lbrakk>D' \<subseteq> (\<lambda>i. cball (a i) (r i)) ` D; finite D'\<rbrakk> \<Longrightarrow> ?\<mu> (\<Union>D') \<le> ?\<mu> (\<Union>i\<in>D. cball (a i) (r i))"
by (fastforce simp add: intro!: measure_mono_fmeasurable UD)
qed (use \<open>e > 0\<close> in \<open>auto dest: finite_subset_image\<close>)
show "\<exists>T. (S - (\<Union>i\<in>C. cball (a i) (r i))) \<inter>
cbox l u \<subseteq> T \<and> T \<in> lmeasurable \<and> ?\<mu> T \<le> e"
proof (intro exI conjI)
show "(S - (\<Union>i\<in>C. cball (a i) (r i))) \<inter> cbox l u \<subseteq> (\<Union>i\<in>D - D1. ball (a i) (5 * r i))"
proof clarify
fix x
assume x: "x \<in> cbox l u" "x \<in> S" "x \<notin> (\<Union>i\<in>C. cball (a i) (r i))"
have "closed (\<Union>i\<in>D1. cball (a i) (r i))"
using \<open>finite D1\<close> by blast
moreover have "x \<notin> (\<Union>j\<in>D1. cball (a j) (r j))"
using x \<open>D1 \<subseteq> D\<close> unfolding D_def by blast
ultimately obtain q where "q > 0" and q: "ball x q \<subseteq> - (\<Union>i\<in>D1. cball (a i) (r i))"
by (metis (no_types, lifting) ComplI open_contains_ball closed_def)
obtain i where "i \<in> K" and xi: "x \<in> cball (a i) (r i)" and ri: "r i < q/2"
using Sd [OF \<open>x \<in> S\<close>] \<open>q > 0\<close> half_gt_zero by blast
then obtain j where "j \<in> C"
and nondisj: "\<not> disjnt (cball (a i) (r i)) (cball (a j) (r j))"
and sub5j: "cball (a i) (r i) \<subseteq> ball (a j) (5 * r j)"
using cov [OF \<open>i \<in> K\<close>] by metis
show "x \<in> (\<Union>i\<in>D - D1. ball (a i) (5 * r i))"
proof
show "j \<in> D - D1"
proof
show "j \<in> D"
using \<open>j \<in> C\<close> sub5j \<open>x \<in> cbox l u\<close> xi by (auto simp: D_def disjnt_def)
obtain y where yi: "dist (a i) y \<le> r i" and yj: "dist (a j) y \<le> r j"
using disjnt_def nondisj by fastforce
have "dist x y \<le> r i + r i"
by (metis add_mono dist_commute dist_triangle_le mem_cball xi yi)
also have "\<dots> < q"
using ri by linarith
finally have "y \<in> ball x q"
by simp
with yj q show "j \<notin> D1"
by (auto simp: disjoint_UN_iff)
qed
show "x \<in> ball (a j) (5 * r j)"
using xi sub5j by blast
qed
qed
have 3: "?\<mu> (\<Union>i\<in>D2. ball (a i) (5 * r i)) \<le> e"
if D2: "D2 \<subseteq> D - D1" and "finite D2" for D2
proof -
have rgt0: "0 < r i" if "i \<in> D2" for i
using \<open>C \<subseteq> K\<close> D_def \<open>i \<in> D2\<close> D2 r01
by (simp add: subset_iff)
then have inj: "inj_on (\<lambda>i. ball (a i) (5 * r i)) D2"
using \<open>C \<subseteq> K\<close> D2 by (fastforce simp: inj_on_def D_def ball_eq_ball_iff intro: ar_injective)
have "?\<mu> (\<Union>i\<in>D2. ball (a i) (5 * r i)) \<le> sum (?\<mu>) ((\<lambda>i. ball (a i) (5 * r i)) ` D2)"
using that by (force intro: measure_Union_le)
also have "\<dots> = (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (5 * r i)))"
by (simp add: comm_monoid_add_class.sum.reindex [OF inj])
also have "\<dots> = (\<Sum>i\<in>D2. 5 ^ DIM('n) * ?\<mu> (ball (a i) (r i)))"
proof (rule sum.cong [OF refl])
fix i assume "i \<in> D2"
thus "?\<mu> (ball (a i) (5 * r i)) = 5 ^ DIM('n) * ?\<mu> (ball (a i) (r i))"
using content_ball_conv_unit_ball[of "5 * r i" "a i"]
content_ball_conv_unit_ball[of "r i" "a i"] rgt0[of i] by auto
qed
also have "\<dots> = (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) * 5 ^ DIM('n)"
by (simp add: sum_distrib_left mult.commute)
finally have "?\<mu> (\<Union>i\<in>D2. ball (a i) (5 * r i)) \<le> (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) * 5 ^ DIM('n)" .
moreover have "(\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) \<le> e / 5 ^ DIM('n)"
proof -
have D12_dis: "((\<Union>x\<in>D1. cball (a x) (r x)) \<inter> (\<Union>x\<in>D2. cball (a x) (r x))) \<le> {}"
proof clarify
fix w d1 d2
assume "d1 \<in> D1" "w d1 d2 \<in> cball (a d1) (r d1)" "d2 \<in> D2" "w d1 d2 \<in> cball (a d2) (r d2)"
then show "w d1 d2 \<in> {}"
by (metis DiffE disjnt_iff subsetCE D2 \<open>D1 \<subseteq> D\<close> \<open>D \<subseteq> C\<close> pairwiseD [OF pwC, of d1 d2])
qed
have inj: "inj_on (\<lambda>i. cball (a i) (r i)) D2"
using rgt0 D2 \<open>D \<subseteq> C\<close> by (force simp: inj_on_def cball_eq_cball_iff intro!: ar_injective)
have ds: "disjoint ((\<lambda>i. cball (a i) (r i)) ` D2)"
using D2 \<open>D \<subseteq> C\<close> by (auto intro: pairwiseI pairwiseD [OF pwC])
have "(\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) = (\<Sum>i\<in>D2. ?\<mu> (cball (a i) (r i)))"
by (simp add: content_cball_conv_ball)
also have "\<dots> = sum ?\<mu> ((\<lambda>i. cball (a i) (r i)) ` D2)"
by (simp add: comm_monoid_add_class.sum.reindex [OF inj])
also have "\<dots> = ?\<mu> (\<Union>i\<in>D2. cball (a i) (r i))"
by (auto intro: measure_Union' [symmetric] ds simp add: \<open>finite D2\<close>)
finally have "?\<mu> (\<Union>i\<in>D1. cball (a i) (r i)) + (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) =
?\<mu> (\<Union>i\<in>D1. cball (a i) (r i)) + ?\<mu> (\<Union>i\<in>D2. cball (a i) (r i))"
by simp
also have "\<dots> = ?\<mu> (\<Union>i \<in> D1 \<union> D2. cball (a i) (r i))"
using D12_dis by (simp add: measure_Un3 \<open>finite D1\<close> \<open>finite D2\<close> fmeasurable.finite_UN)
also have "\<dots> \<le> ?\<mu> (\<Union>i\<in>D. cball (a i) (r i))"
using D2 \<open>D1 \<subseteq> D\<close> by (fastforce intro!: measure_mono_fmeasurable [OF _ _ UD] \<open>finite D1\<close> \<open>finite D2\<close>)
finally have "?\<mu> (\<Union>i\<in>D1. cball (a i) (r i)) + (\<Sum>i\<in>D2. ?\<mu> (ball (a i) (r i))) \<le> ?\<mu> (\<Union>i\<in>D. cball (a i) (r i))" .
with measD1 show ?thesis
by simp
qed
ultimately show ?thesis
by (simp add: field_split_simps)
qed
have co: "countable (D - D1)"
by (simp add: \<open>countable D\<close>)
show "(\<Union>i\<in>D - D1. ball (a i) (5 * r i)) \<in> lmeasurable"
using \<open>e > 0\<close> by (auto simp: fmeasurable_UN_bound [OF co _ 3])
show "?\<mu> (\<Union>i\<in>D - D1. ball (a i) (5 * r i)) \<le> e"
using \<open>e > 0\<close> by (auto simp: measure_UN_bound [OF co _ 3])
qed
qed
qed
qed (use C pwC in auto)
qed
define K' where "K' \<equiv> {i \<in> K. r i \<le> 1}"
have 1: "\<And>i. i \<in> K' \<Longrightarrow> 0 < r i \<and> r i \<le> 1"
using K'_def r by auto
have 2: "\<exists>i. i \<in> K' \<and> x \<in> cball (a i) (r i) \<and> r i < d"
if "x \<in> S \<and> 0 < d" for x d
using that by (auto simp: K'_def dest!: S [where d = "min d 1"])
have "K' \<subseteq> K"
using K'_def by auto
then show thesis
using * [OF 1 2] that by fastforce
qed
theorem Vitali_covering_theorem_balls:
fixes a :: "'a \<Rightarrow> 'b::euclidean_space"
assumes S: "\<And>x d. \<lbrakk>x \<in> S; 0 < d\<rbrakk> \<Longrightarrow> \<exists>i. i \<in> K \<and> x \<in> ball (a i) (r i) \<and> r i < d"
obtains C where "countable C" "C \<subseteq> K"
"pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
"negligible(S - (\<Union>i \<in> C. ball (a i) (r i)))"
proof -
have 1: "\<exists>i. i \<in> {i \<in> K. 0 < r i} \<and> x \<in> cball (a i) (r i) \<and> r i < d"
if xd: "x \<in> S" "d > 0" for x d
by (metis (mono_tags, lifting) assms ball_eq_empty less_eq_real_def mem_Collect_eq mem_ball mem_cball not_le xd(1) xd(2))
obtain C where C: "countable C" "C \<subseteq> K"
and pw: "pairwise (\<lambda>i j. disjnt (cball (a i) (r i)) (cball (a j) (r j))) C"
and neg: "negligible(S - (\<Union>i \<in> C. cball (a i) (r i)))"
by (rule Vitali_covering_theorem_cballs [of "{i \<in> K. 0 < r i}" r S a, OF _ 1]) auto
show thesis
proof
show "pairwise (\<lambda>i j. disjnt (ball (a i) (r i)) (ball (a j) (r j))) C"
apply (rule pairwise_mono [OF pw])
apply (auto simp: disjnt_def)
by (meson disjoint_iff_not_equal less_imp_le mem_cball)
have "negligible (\<Union>i\<in>C. sphere (a i) (r i))"
by (auto intro: negligible_sphere \<open>countable C\<close>)
then have "negligible (S - (\<Union>i \<in> C. cball(a i)(r i)) \<union> (\<Union>i \<in> C. sphere (a i) (r i)))"
by (rule negligible_Un [OF neg])
then show "negligible (S - (\<Union>i\<in>C. ball (a i) (r i)))"
by (rule negligible_subset) force
qed (use C in auto)
qed
lemma negligible_eq_zero_density_alt:
"negligible S \<longleftrightarrow>
(\<forall>x \<in> S. \<forall>e > 0.
\<exists>d U. 0 < d \<and> d \<le> e \<and> S \<inter> ball x d \<subseteq> U \<and>
U \<in> lmeasurable \<and> measure lebesgue U < e * measure lebesgue (ball x d))"
(is "_ = (\<forall>x \<in> S. \<forall>e > 0. ?Q x e)")
proof (intro iffI ballI allI impI)
fix x and e :: real
assume "negligible S" and "x \<in> S" and "e > 0"
then
show "\<exists>d U. 0 < d \<and> d \<le> e \<and> S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and>
measure lebesgue U < e * measure lebesgue (ball x d)"
apply (rule_tac x=e in exI)
apply (rule_tac x="S \<inter> ball x e" in exI)
apply (auto simp: negligible_imp_measurable negligible_Int negligible_imp_measure0 zero_less_measure_iff
intro: mult_pos_pos content_ball_pos)
done
next
assume R [rule_format]: "\<forall>x \<in> S. \<forall>e > 0. ?Q x e"
let ?\<mu> = "measure lebesgue"
have "\<exists>U. openin (top_of_set S) U \<and> z \<in> U \<and> negligible U"
if "z \<in> S" for z
proof (intro exI conjI)
show "openin (top_of_set S) (S \<inter> ball z 1)"
by (simp add: openin_open_Int)
show "z \<in> S \<inter> ball z 1"
using \<open>z \<in> S\<close> by auto
show "negligible (S \<inter> ball z 1)"
proof (clarsimp simp: negligible_outer_le)
fix e :: "real"
assume "e > 0"
let ?K = "{(x,d). x \<in> S \<and> 0 < d \<and> ball x d \<subseteq> ball z 1 \<and>
(\<exists>U. S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and>
?\<mu> U < e / ?\<mu> (ball z 1) * ?\<mu> (ball x d))}"
obtain C where "countable C" and Csub: "C \<subseteq> ?K"
and pwC: "pairwise (\<lambda>i j. disjnt (ball (fst i) (snd i)) (ball (fst j) (snd j))) C"
and negC: "negligible((S \<inter> ball z 1) - (\<Union>i \<in> C. ball (fst i) (snd i)))"
proof (rule Vitali_covering_theorem_balls [of "S \<inter> ball z 1" ?K fst snd])
fix x and d :: "real"
assume x: "x \<in> S \<inter> ball z 1" and "d > 0"
obtain k where "k > 0" and k: "ball x k \<subseteq> ball z 1"
by (meson Int_iff open_ball openE x)
let ?\<epsilon> = "min (e / ?\<mu> (ball z 1) / 2) (min (d / 2) k)"
obtain r U where r: "r > 0" "r \<le> ?\<epsilon>" and U: "S \<inter> ball x r \<subseteq> U" "U \<in> lmeasurable"
and mU: "?\<mu> U < ?\<epsilon> * ?\<mu> (ball x r)"
using R [of x ?\<epsilon>] \<open>d > 0\<close> \<open>e > 0\<close> \<open>k > 0\<close> x by (auto simp: content_ball_pos)
show "\<exists>i. i \<in> ?K \<and> x \<in> ball (fst i) (snd i) \<and> snd i < d"
proof (rule exI [of _ "(x,r)"], simp, intro conjI exI)
have "ball x r \<subseteq> ball x k"
using r by (simp add: ball_subset_ball_iff)
also have "\<dots> \<subseteq> ball z 1"
using ball_subset_ball_iff k by auto
finally show "ball x r \<subseteq> ball z 1" .
have "?\<epsilon> * ?\<mu> (ball x r) \<le> e * content (ball x r) / content (ball z 1)"
using r \<open>e > 0\<close> by (simp add: ord_class.min_def field_split_simps content_ball_pos)
with mU show "?\<mu> U < e * content (ball x r) / content (ball z 1)"
by auto
qed (use r U x in auto)
qed
have "\<exists>U. case p of (x,d) \<Rightarrow> S \<inter> ball x d \<subseteq> U \<and>
U \<in> lmeasurable \<and> ?\<mu> U < e / ?\<mu> (ball z 1) * ?\<mu> (ball x d)"
if "p \<in> C" for p
using that Csub unfolding case_prod_unfold by blast
then obtain U where U:
"\<And>p. p \<in> C \<Longrightarrow>
case p of (x,d) \<Rightarrow> S \<inter> ball x d \<subseteq> U p \<and>
U p \<in> lmeasurable \<and> ?\<mu> (U p) < e / ?\<mu> (ball z 1) * ?\<mu> (ball x d)"
by (rule that [OF someI_ex])
let ?T = "((S \<inter> ball z 1) - (\<Union>(x,d)\<in>C. ball x d)) \<union> \<Union>(U ` C)"
show "\<exists>T. S \<inter> ball z 1 \<subseteq> T \<and> T \<in> lmeasurable \<and> ?\<mu> T \<le> e"
proof (intro exI conjI)
show "S \<inter> ball z 1 \<subseteq> ?T"
using U by fastforce
{ have Um: "U i \<in> lmeasurable" if "i \<in> C" for i
using that U by blast
have lee: "?\<mu> (\<Union>i\<in>I. U i) \<le> e" if "I \<subseteq> C" "finite I" for I
proof -
have "?\<mu> (\<Union>(x,d)\<in>I. ball x d) \<le> ?\<mu> (ball z 1)"
apply (rule measure_mono_fmeasurable)
using \<open>I \<subseteq> C\<close> \<open>finite I\<close> Csub by (force simp: prod.case_eq_if sets.finite_UN)+
then have le1: "(?\<mu> (\<Union>(x,d)\<in>I. ball x d) / ?\<mu> (ball z 1)) \<le> 1"
by (simp add: content_ball_pos)
have "?\<mu> (\<Union>i\<in>I. U i) \<le> (\<Sum>i\<in>I. ?\<mu> (U i))"
using that U by (blast intro: measure_UNION_le)
also have "\<dots> \<le> (\<Sum>(x,r)\<in>I. e / ?\<mu> (ball z 1) * ?\<mu> (ball x r))"
by (rule sum_mono) (use \<open>I \<subseteq> C\<close> U in force)
also have "\<dots> = (e / ?\<mu> (ball z 1)) * (\<Sum>(x,r)\<in>I. ?\<mu> (ball x r))"
by (simp add: case_prod_app prod.case_distrib sum_distrib_left)
also have "\<dots> = e * (?\<mu> (\<Union>(x,r)\<in>I. ball x r) / ?\<mu> (ball z 1))"
apply (subst measure_UNION')
using that pwC by (auto simp: case_prod_unfold elim: pairwise_mono)
also have "\<dots> \<le> e"
by (metis mult.commute mult.left_neutral real_mult_le_cancel_iff1 \<open>e > 0\<close> le1)
finally show ?thesis .
qed
have "\<Union>(U ` C) \<in> lmeasurable" "?\<mu> (\<Union>(U ` C)) \<le> e"
using \<open>e > 0\<close> Um lee
by(auto intro!: fmeasurable_UN_bound [OF \<open>countable C\<close>] measure_UN_bound [OF \<open>countable C\<close>])
}
moreover have "?\<mu> ?T = ?\<mu> (\<Union>(U ` C))"
proof (rule measure_negligible_symdiff [OF \<open>\<Union>(U ` C) \<in> lmeasurable\<close>])
show "negligible((\<Union>(U ` C) - ?T) \<union> (?T - \<Union>(U ` C)))"
by (force intro!: negligible_subset [OF negC])
qed
ultimately show "?T \<in> lmeasurable" "?\<mu> ?T \<le> e"
by (simp_all add: fmeasurable.Un negC negligible_imp_measurable split_def)
qed
qed
qed
with locally_negligible_alt show "negligible S"
by metis
qed
proposition negligible_eq_zero_density:
"negligible S \<longleftrightarrow>
(\<forall>x\<in>S. \<forall>r>0. \<forall>e>0. \<exists>d. 0 < d \<and> d \<le> r \<and>
(\<exists>U. S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and> measure lebesgue U < e * measure lebesgue (ball x d)))"
proof -
let ?Q = "\<lambda>x d e. \<exists>U. S \<inter> ball x d \<subseteq> U \<and> U \<in> lmeasurable \<and> measure lebesgue U < e * content (ball x d)"
have "(\<forall>e>0. \<exists>d>0. d \<le> e \<and> ?Q x d e) = (\<forall>r>0. \<forall>e>0. \<exists>d>0. d \<le> r \<and> ?Q x d e)"
if "x \<in> S" for x
proof (intro iffI allI impI)
fix r :: "real" and e :: "real"
assume L [rule_format]: "\<forall>e>0. \<exists>d>0. d \<le> e \<and> ?Q x d e" and "r > 0" "e > 0"
show "\<exists>d>0. d \<le> r \<and> ?Q x d e"
using L [of "min r e"] apply (rule ex_forward)
using \<open>r > 0\<close> \<open>e > 0\<close> by (auto intro: less_le_trans elim!: ex_forward simp: content_ball_pos)
qed auto
then show ?thesis
by (force simp: negligible_eq_zero_density_alt)
qed
end