(* Title: ZF/simpdata.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Rewriting for ZF set theory: specialized extraction of rewrites from theorems.
*)
(*** New version of mk_rew_rules ***)
(*Should False yield False<->True, or should it solve goals some other way?*)
(*Analyse a theorem to atomic rewrite rules*)
fun atomize (conn_pairs, mem_pairs) th =
let fun tryrules pairs t =
case head_of t of
Const(a,_) =>
(case AList.lookup (op =) pairs a of
SOME rls => maps (atomize (conn_pairs, mem_pairs)) ([th] RL rls)
| NONE => [th])
| _ => [th]
in case Thm.concl_of th of
\<^Const_>\<open>Trueprop for P\<close> =>
(case P of
\<^Const_>\<open>mem for a b\<close> => tryrules mem_pairs b
| \<^Const_>\<open>True\<close> => []
| \<^Const_>\<open>False\<close> => []
| A => tryrules conn_pairs A)
| _ => [th]
end;
(*Analyse a rigid formula*)
val ZF_conn_pairs =
[(\<^const_name>\<open>Ball\<close>, [@{thm bspec}]),
(\<^const_name>\<open>All\<close>, [@{thm spec}]),
(\<^const_name>\<open>imp\<close>, [@{thm mp}]),
(\<^const_name>\<open>conj\<close>, [@{thm conjunct1}, @{thm conjunct2}])];
(*Analyse a:b, where b is rigid*)
val ZF_mem_pairs =
[(\<^const_name>\<open>Collect\<close>, [@{thm CollectD1}, @{thm CollectD2}]),
(\<^const_name>\<open>Diff\<close>, [@{thm DiffD1}, @{thm DiffD2}]),
(\<^const_name>\<open>Int\<close>, [@{thm IntD1}, @{thm IntD2}])];
val ZF_atomize = atomize (ZF_conn_pairs, ZF_mem_pairs);