add countable compacteness; replace finite_range_imp_infinite_repeats by pigeonhole_infinite
(* Title : Deriv.thy
Author : Jacques D. Fleuriot
Copyright : 1998 University of Cambridge
Conversion to Isar and new proofs by Lawrence C Paulson, 2004
GMVT by Benjamin Porter, 2005
*)
header{* Differentiation *}
theory Deriv
imports Lim
begin
text{*Standard Definitions*}
definition
deriv :: "['a::real_normed_field \<Rightarrow> 'a, 'a, 'a] \<Rightarrow> bool"
--{*Differentiation: D is derivative of function f at x*}
("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
"DERIV f x :> D = ((%h. (f(x + h) - f x) / h) -- 0 --> D)"
primrec
Bolzano_bisect :: "(real \<times> real \<Rightarrow> bool) \<Rightarrow> real \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real \<times> real" where
"Bolzano_bisect P a b 0 = (a, b)"
| "Bolzano_bisect P a b (Suc n) =
(let (x, y) = Bolzano_bisect P a b n
in if P (x, (x+y) / 2) then ((x+y)/2, y)
else (x, (x+y)/2))"
subsection {* Derivatives *}
lemma DERIV_iff: "(DERIV f x :> D) = ((%h. (f(x + h) - f(x))/h) -- 0 --> D)"
by (simp add: deriv_def)
lemma DERIV_D: "DERIV f x :> D ==> (%h. (f(x + h) - f(x))/h) -- 0 --> D"
by (simp add: deriv_def)
lemma DERIV_const [simp]: "DERIV (\<lambda>x. k) x :> 0"
by (simp add: deriv_def tendsto_const)
lemma DERIV_ident [simp]: "DERIV (\<lambda>x. x) x :> 1"
by (simp add: deriv_def tendsto_const cong: LIM_cong)
lemma DERIV_add:
"\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x + g x) x :> D + E"
by (simp only: deriv_def add_diff_add add_divide_distrib tendsto_add)
lemma DERIV_minus:
"DERIV f x :> D \<Longrightarrow> DERIV (\<lambda>x. - f x) x :> - D"
by (simp only: deriv_def minus_diff_minus divide_minus_left tendsto_minus)
lemma DERIV_diff:
"\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x - g x) x :> D - E"
by (simp only: diff_minus DERIV_add DERIV_minus)
lemma DERIV_add_minus:
"\<lbrakk>DERIV f x :> D; DERIV g x :> E\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. f x + - g x) x :> D + - E"
by (simp only: DERIV_add DERIV_minus)
lemma DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
proof (unfold isCont_iff)
assume "DERIV f x :> D"
hence "(\<lambda>h. (f(x+h) - f(x)) / h) -- 0 --> D"
by (rule DERIV_D)
hence "(\<lambda>h. (f(x+h) - f(x)) / h * h) -- 0 --> D * 0"
by (intro tendsto_mult tendsto_ident_at)
hence "(\<lambda>h. (f(x+h) - f(x)) * (h / h)) -- 0 --> 0"
by simp
hence "(\<lambda>h. f(x+h) - f(x)) -- 0 --> 0"
by (simp cong: LIM_cong)
thus "(\<lambda>h. f(x+h)) -- 0 --> f(x)"
by (simp add: LIM_def dist_norm)
qed
lemma DERIV_mult_lemma:
fixes a b c d :: "'a::real_field"
shows "(a * b - c * d) / h = a * ((b - d) / h) + ((a - c) / h) * d"
by (simp add: field_simps diff_divide_distrib)
lemma DERIV_mult':
assumes f: "DERIV f x :> D"
assumes g: "DERIV g x :> E"
shows "DERIV (\<lambda>x. f x * g x) x :> f x * E + D * g x"
proof (unfold deriv_def)
from f have "isCont f x"
by (rule DERIV_isCont)
hence "(\<lambda>h. f(x+h)) -- 0 --> f x"
by (simp only: isCont_iff)
hence "(\<lambda>h. f(x+h) * ((g(x+h) - g x) / h) +
((f(x+h) - f x) / h) * g x)
-- 0 --> f x * E + D * g x"
by (intro tendsto_intros DERIV_D f g)
thus "(\<lambda>h. (f(x+h) * g(x+h) - f x * g x) / h)
-- 0 --> f x * E + D * g x"
by (simp only: DERIV_mult_lemma)
qed
lemma DERIV_mult:
"DERIV f x :> Da \<Longrightarrow> DERIV g x :> Db \<Longrightarrow> DERIV (\<lambda>x. f x * g x) x :> Da * g x + Db * f x"
by (drule (1) DERIV_mult', simp only: mult_commute add_commute)
lemma DERIV_unique:
"DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"
unfolding deriv_def by (rule LIM_unique)
text{*Differentiation of finite sum*}
lemma DERIV_setsum:
assumes "finite S"
and "\<And> n. n \<in> S \<Longrightarrow> DERIV (%x. f x n) x :> (f' x n)"
shows "DERIV (%x. setsum (f x) S) x :> setsum (f' x) S"
using assms by induct (auto intro!: DERIV_add)
lemma DERIV_sumr [rule_format (no_asm)]:
"(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x))
--> DERIV (%x. \<Sum>n=m..<n::nat. f n x :: real) x :> (\<Sum>r=m..<n. f' r x)"
by (auto intro: DERIV_setsum)
text{*Alternative definition for differentiability*}
lemma DERIV_LIM_iff:
fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a" shows
"((%h. (f(a + h) - f(a)) / h) -- 0 --> D) =
((%x. (f(x)-f(a)) / (x-a)) -- a --> D)"
apply (rule iffI)
apply (drule_tac k="- a" in LIM_offset)
apply (simp add: diff_minus)
apply (drule_tac k="a" in LIM_offset)
apply (simp add: add_commute)
done
lemma DERIV_iff2: "(DERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) -- x --> D)"
by (simp add: deriv_def diff_minus [symmetric] DERIV_LIM_iff)
lemma DERIV_inverse_lemma:
"\<lbrakk>a \<noteq> 0; b \<noteq> (0::'a::real_normed_field)\<rbrakk>
\<Longrightarrow> (inverse a - inverse b) / h
= - (inverse a * ((a - b) / h) * inverse b)"
by (simp add: inverse_diff_inverse)
lemma DERIV_inverse':
assumes der: "DERIV f x :> D"
assumes neq: "f x \<noteq> 0"
shows "DERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x) * D * inverse (f x))"
(is "DERIV _ _ :> ?E")
proof (unfold DERIV_iff2)
from der have lim_f: "f -- x --> f x"
by (rule DERIV_isCont [unfolded isCont_def])
from neq have "0 < norm (f x)" by simp
with LIM_D [OF lim_f] obtain s
where s: "0 < s"
and less_fx: "\<And>z. \<lbrakk>z \<noteq> x; norm (z - x) < s\<rbrakk>
\<Longrightarrow> norm (f z - f x) < norm (f x)"
by fast
show "(\<lambda>z. (inverse (f z) - inverse (f x)) / (z - x)) -- x --> ?E"
proof (rule LIM_equal2 [OF s])
fix z
assume "z \<noteq> x" "norm (z - x) < s"
hence "norm (f z - f x) < norm (f x)" by (rule less_fx)
hence "f z \<noteq> 0" by auto
thus "(inverse (f z) - inverse (f x)) / (z - x) =
- (inverse (f z) * ((f z - f x) / (z - x)) * inverse (f x))"
using neq by (rule DERIV_inverse_lemma)
next
from der have "(\<lambda>z. (f z - f x) / (z - x)) -- x --> D"
by (unfold DERIV_iff2)
thus "(\<lambda>z. - (inverse (f z) * ((f z - f x) / (z - x)) * inverse (f x)))
-- x --> ?E"
by (intro tendsto_intros lim_f neq)
qed
qed
lemma DERIV_divide:
"\<lbrakk>DERIV f x :> D; DERIV g x :> E; g x \<noteq> 0\<rbrakk>
\<Longrightarrow> DERIV (\<lambda>x. f x / g x) x :> (D * g x - f x * E) / (g x * g x)"
apply (subgoal_tac "f x * - (inverse (g x) * E * inverse (g x)) +
D * inverse (g x) = (D * g x - f x * E) / (g x * g x)")
apply (erule subst)
apply (unfold divide_inverse)
apply (erule DERIV_mult')
apply (erule (1) DERIV_inverse')
apply (simp add: ring_distribs nonzero_inverse_mult_distrib)
done
lemma DERIV_power_Suc:
fixes f :: "'a \<Rightarrow> 'a::{real_normed_field}"
assumes f: "DERIV f x :> D"
shows "DERIV (\<lambda>x. f x ^ Suc n) x :> (1 + of_nat n) * (D * f x ^ n)"
proof (induct n)
case 0
show ?case by (simp add: f)
case (Suc k)
from DERIV_mult' [OF f Suc] show ?case
apply (simp only: of_nat_Suc ring_distribs mult_1_left)
apply (simp only: power_Suc algebra_simps)
done
qed
lemma DERIV_power:
fixes f :: "'a \<Rightarrow> 'a::{real_normed_field}"
assumes f: "DERIV f x :> D"
shows "DERIV (\<lambda>x. f x ^ n) x :> of_nat n * (D * f x ^ (n - Suc 0))"
by (cases "n", simp, simp add: DERIV_power_Suc f del: power_Suc)
text {* Caratheodory formulation of derivative at a point *}
lemma CARAT_DERIV:
"(DERIV f x :> l) =
(\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isCont g x & g x = l)"
(is "?lhs = ?rhs")
proof
assume der: "DERIV f x :> l"
show "\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) \<and> isCont g x \<and> g x = l"
proof (intro exI conjI)
let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))"
show "\<forall>z. f z - f x = ?g z * (z-x)" by simp
show "isCont ?g x" using der
by (simp add: isCont_iff DERIV_iff diff_minus
cong: LIM_equal [rule_format])
show "?g x = l" by simp
qed
next
assume "?rhs"
then obtain g where
"(\<forall>z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast
thus "(DERIV f x :> l)"
by (auto simp add: isCont_iff DERIV_iff cong: LIM_cong)
qed
lemma DERIV_chain':
assumes f: "DERIV f x :> D"
assumes g: "DERIV g (f x) :> E"
shows "DERIV (\<lambda>x. g (f x)) x :> E * D"
proof (unfold DERIV_iff2)
obtain d where d: "\<forall>y. g y - g (f x) = d y * (y - f x)"
and cont_d: "isCont d (f x)" and dfx: "d (f x) = E"
using CARAT_DERIV [THEN iffD1, OF g] by fast
from f have "f -- x --> f x"
by (rule DERIV_isCont [unfolded isCont_def])
with cont_d have "(\<lambda>z. d (f z)) -- x --> d (f x)"
by (rule isCont_tendsto_compose)
hence "(\<lambda>z. d (f z) * ((f z - f x) / (z - x)))
-- x --> d (f x) * D"
by (rule tendsto_mult [OF _ f [unfolded DERIV_iff2]])
thus "(\<lambda>z. (g (f z) - g (f x)) / (z - x)) -- x --> E * D"
by (simp add: d dfx)
qed
text {*
Let's do the standard proof, though theorem
@{text "LIM_mult2"} follows from a NS proof
*}
lemma DERIV_cmult:
"DERIV f x :> D ==> DERIV (%x. c * f x) x :> c*D"
by (drule DERIV_mult' [OF DERIV_const], simp)
lemma DERIV_cdivide: "DERIV f x :> D ==> DERIV (%x. f x / c) x :> D / c"
apply (subgoal_tac "DERIV (%x. (1 / c) * f x) x :> (1 / c) * D", force)
apply (erule DERIV_cmult)
done
text {* Standard version *}
lemma DERIV_chain: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (f o g) x :> Da * Db"
by (drule (1) DERIV_chain', simp add: o_def mult_commute)
lemma DERIV_chain2: "[| DERIV f (g x) :> Da; DERIV g x :> Db |] ==> DERIV (%x. f (g x)) x :> Da * Db"
by (auto dest: DERIV_chain simp add: o_def)
text {* Derivative of linear multiplication *}
lemma DERIV_cmult_Id [simp]: "DERIV (op * c) x :> c"
by (cut_tac c = c and x = x in DERIV_ident [THEN DERIV_cmult], simp)
lemma DERIV_pow: "DERIV (%x. x ^ n) x :> real n * (x ^ (n - Suc 0))"
apply (cut_tac DERIV_power [OF DERIV_ident])
apply (simp add: real_of_nat_def)
done
text {* Power of @{text "-1"} *}
lemma DERIV_inverse:
fixes x :: "'a::{real_normed_field}"
shows "x \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (-(inverse x ^ Suc (Suc 0)))"
by (drule DERIV_inverse' [OF DERIV_ident]) simp
text {* Derivative of inverse *}
lemma DERIV_inverse_fun:
fixes x :: "'a::{real_normed_field}"
shows "[| DERIV f x :> d; f(x) \<noteq> 0 |]
==> DERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
by (drule (1) DERIV_inverse') (simp add: mult_ac nonzero_inverse_mult_distrib)
text {* Derivative of quotient *}
lemma DERIV_quotient:
fixes x :: "'a::{real_normed_field}"
shows "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> 0 |]
==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / (g(x) ^ Suc (Suc 0))"
by (drule (2) DERIV_divide) (simp add: mult_commute)
text {* @{text "DERIV_intros"} *}
ML {*
structure Deriv_Intros = Named_Thms
(
val name = @{binding DERIV_intros}
val description = "DERIV introduction rules"
)
*}
setup Deriv_Intros.setup
lemma DERIV_cong: "\<lbrakk> DERIV f x :> X ; X = Y \<rbrakk> \<Longrightarrow> DERIV f x :> Y"
by simp
declare
DERIV_const[THEN DERIV_cong, DERIV_intros]
DERIV_ident[THEN DERIV_cong, DERIV_intros]
DERIV_add[THEN DERIV_cong, DERIV_intros]
DERIV_minus[THEN DERIV_cong, DERIV_intros]
DERIV_mult[THEN DERIV_cong, DERIV_intros]
DERIV_diff[THEN DERIV_cong, DERIV_intros]
DERIV_inverse'[THEN DERIV_cong, DERIV_intros]
DERIV_divide[THEN DERIV_cong, DERIV_intros]
DERIV_power[where 'a=real, THEN DERIV_cong,
unfolded real_of_nat_def[symmetric], DERIV_intros]
DERIV_setsum[THEN DERIV_cong, DERIV_intros]
subsection {* Differentiability predicate *}
definition
differentiable :: "['a::real_normed_field \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
(infixl "differentiable" 60) where
"f differentiable x = (\<exists>D. DERIV f x :> D)"
lemma differentiableE [elim?]:
assumes "f differentiable x"
obtains df where "DERIV f x :> df"
using assms unfolding differentiable_def ..
lemma differentiableD: "f differentiable x ==> \<exists>D. DERIV f x :> D"
by (simp add: differentiable_def)
lemma differentiableI: "DERIV f x :> D ==> f differentiable x"
by (force simp add: differentiable_def)
lemma differentiable_ident [simp]: "(\<lambda>x. x) differentiable x"
by (rule DERIV_ident [THEN differentiableI])
lemma differentiable_const [simp]: "(\<lambda>z. a) differentiable x"
by (rule DERIV_const [THEN differentiableI])
lemma differentiable_compose:
assumes f: "f differentiable (g x)"
assumes g: "g differentiable x"
shows "(\<lambda>x. f (g x)) differentiable x"
proof -
from `f differentiable (g x)` obtain df where "DERIV f (g x) :> df" ..
moreover
from `g differentiable x` obtain dg where "DERIV g x :> dg" ..
ultimately
have "DERIV (\<lambda>x. f (g x)) x :> df * dg" by (rule DERIV_chain2)
thus ?thesis by (rule differentiableI)
qed
lemma differentiable_sum [simp]:
assumes "f differentiable x"
and "g differentiable x"
shows "(\<lambda>x. f x + g x) differentiable x"
proof -
from `f differentiable x` obtain df where "DERIV f x :> df" ..
moreover
from `g differentiable x` obtain dg where "DERIV g x :> dg" ..
ultimately
have "DERIV (\<lambda>x. f x + g x) x :> df + dg" by (rule DERIV_add)
thus ?thesis by (rule differentiableI)
qed
lemma differentiable_minus [simp]:
assumes "f differentiable x"
shows "(\<lambda>x. - f x) differentiable x"
proof -
from `f differentiable x` obtain df where "DERIV f x :> df" ..
hence "DERIV (\<lambda>x. - f x) x :> - df" by (rule DERIV_minus)
thus ?thesis by (rule differentiableI)
qed
lemma differentiable_diff [simp]:
assumes "f differentiable x"
assumes "g differentiable x"
shows "(\<lambda>x. f x - g x) differentiable x"
unfolding diff_minus using assms by simp
lemma differentiable_mult [simp]:
assumes "f differentiable x"
assumes "g differentiable x"
shows "(\<lambda>x. f x * g x) differentiable x"
proof -
from `f differentiable x` obtain df where "DERIV f x :> df" ..
moreover
from `g differentiable x` obtain dg where "DERIV g x :> dg" ..
ultimately
have "DERIV (\<lambda>x. f x * g x) x :> df * g x + dg * f x" by (rule DERIV_mult)
thus ?thesis by (rule differentiableI)
qed
lemma differentiable_inverse [simp]:
assumes "f differentiable x" and "f x \<noteq> 0"
shows "(\<lambda>x. inverse (f x)) differentiable x"
proof -
from `f differentiable x` obtain df where "DERIV f x :> df" ..
hence "DERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x) * df * inverse (f x))"
using `f x \<noteq> 0` by (rule DERIV_inverse')
thus ?thesis by (rule differentiableI)
qed
lemma differentiable_divide [simp]:
assumes "f differentiable x"
assumes "g differentiable x" and "g x \<noteq> 0"
shows "(\<lambda>x. f x / g x) differentiable x"
unfolding divide_inverse using assms by simp
lemma differentiable_power [simp]:
fixes f :: "'a::{real_normed_field} \<Rightarrow> 'a"
assumes "f differentiable x"
shows "(\<lambda>x. f x ^ n) differentiable x"
apply (induct n)
apply simp
apply (simp add: assms)
done
subsection {* Nested Intervals and Bisection *}
text{*Lemmas about nested intervals and proof by bisection (cf.Harrison).
All considerably tidied by lcp.*}
lemma lemma_f_mono_add [rule_format (no_asm)]: "(\<forall>n. (f::nat=>real) n \<le> f (Suc n)) --> f m \<le> f(m + no)"
apply (induct "no")
apply (auto intro: order_trans)
done
lemma f_inc_g_dec_Beq_f: "[| \<forall>n. f(n) \<le> f(Suc n);
\<forall>n. g(Suc n) \<le> g(n);
\<forall>n. f(n) \<le> g(n) |]
==> Bseq (f :: nat \<Rightarrow> real)"
apply (rule_tac k = "f 0" and K = "g 0" in BseqI2, rule allI)
apply (rule conjI)
apply (induct_tac "n")
apply (auto intro: order_trans)
apply (rule_tac y = "g n" in order_trans)
apply (induct_tac [2] "n")
apply (auto intro: order_trans)
done
lemma f_inc_g_dec_Beq_g: "[| \<forall>n. f(n) \<le> f(Suc n);
\<forall>n. g(Suc n) \<le> g(n);
\<forall>n. f(n) \<le> g(n) |]
==> Bseq (g :: nat \<Rightarrow> real)"
apply (subst Bseq_minus_iff [symmetric])
apply (rule_tac g = "%x. - (f x)" in f_inc_g_dec_Beq_f)
apply auto
done
lemma f_inc_imp_le_lim:
fixes f :: "nat \<Rightarrow> real"
shows "\<lbrakk>\<forall>n. f n \<le> f (Suc n); convergent f\<rbrakk> \<Longrightarrow> f n \<le> lim f"
by (rule incseq_le, simp add: incseq_SucI, simp add: convergent_LIMSEQ_iff)
lemma lim_uminus:
fixes g :: "nat \<Rightarrow> 'a::real_normed_vector"
shows "convergent g ==> lim (%x. - g x) = - (lim g)"
apply (rule tendsto_minus [THEN limI])
apply (simp add: convergent_LIMSEQ_iff)
done
lemma g_dec_imp_lim_le:
fixes g :: "nat \<Rightarrow> real"
shows "\<lbrakk>\<forall>n. g (Suc n) \<le> g(n); convergent g\<rbrakk> \<Longrightarrow> lim g \<le> g n"
by (rule decseq_le, simp add: decseq_SucI, simp add: convergent_LIMSEQ_iff)
lemma lemma_nest: "[| \<forall>n. f(n) \<le> f(Suc n);
\<forall>n. g(Suc n) \<le> g(n);
\<forall>n. f(n) \<le> g(n) |]
==> \<exists>l m :: real. l \<le> m & ((\<forall>n. f(n) \<le> l) & f ----> l) &
((\<forall>n. m \<le> g(n)) & g ----> m)"
apply (subgoal_tac "monoseq f & monoseq g")
prefer 2 apply (force simp add: LIMSEQ_iff monoseq_Suc)
apply (subgoal_tac "Bseq f & Bseq g")
prefer 2 apply (blast intro: f_inc_g_dec_Beq_f f_inc_g_dec_Beq_g)
apply (auto dest!: Bseq_monoseq_convergent simp add: convergent_LIMSEQ_iff)
apply (rule_tac x = "lim f" in exI)
apply (rule_tac x = "lim g" in exI)
apply (auto intro: LIMSEQ_le)
apply (auto simp add: f_inc_imp_le_lim g_dec_imp_lim_le convergent_LIMSEQ_iff)
done
lemma lemma_nest_unique: "[| \<forall>n. f(n) \<le> f(Suc n);
\<forall>n. g(Suc n) \<le> g(n);
\<forall>n. f(n) \<le> g(n);
(%n. f(n) - g(n)) ----> 0 |]
==> \<exists>l::real. ((\<forall>n. f(n) \<le> l) & f ----> l) &
((\<forall>n. l \<le> g(n)) & g ----> l)"
apply (drule lemma_nest, auto)
apply (subgoal_tac "l = m")
apply (drule_tac [2] f = f in tendsto_diff)
apply (auto intro: LIMSEQ_unique)
done
text{*The universal quantifiers below are required for the declaration
of @{text Bolzano_nest_unique} below.*}
lemma Bolzano_bisect_le:
"a \<le> b ==> \<forall>n. fst (Bolzano_bisect P a b n) \<le> snd (Bolzano_bisect P a b n)"
apply (rule allI)
apply (induct_tac "n")
apply (auto simp add: Let_def split_def)
done
lemma Bolzano_bisect_fst_le_Suc: "a \<le> b ==>
\<forall>n. fst(Bolzano_bisect P a b n) \<le> fst (Bolzano_bisect P a b (Suc n))"
apply (rule allI)
apply (induct_tac "n")
apply (auto simp add: Bolzano_bisect_le Let_def split_def)
done
lemma Bolzano_bisect_Suc_le_snd: "a \<le> b ==>
\<forall>n. snd(Bolzano_bisect P a b (Suc n)) \<le> snd (Bolzano_bisect P a b n)"
apply (rule allI)
apply (induct_tac "n")
apply (auto simp add: Bolzano_bisect_le Let_def split_def)
done
lemma eq_divide_2_times_iff: "((x::real) = y / (2 * z)) = (2 * x = y/z)"
apply (auto)
apply (drule_tac f = "%u. (1/2) *u" in arg_cong)
apply (simp)
done
lemma Bolzano_bisect_diff:
"a \<le> b ==>
snd(Bolzano_bisect P a b n) - fst(Bolzano_bisect P a b n) =
(b-a) / (2 ^ n)"
apply (induct "n")
apply (auto simp add: eq_divide_2_times_iff add_divide_distrib Let_def split_def)
done
lemmas Bolzano_nest_unique =
lemma_nest_unique
[OF Bolzano_bisect_fst_le_Suc Bolzano_bisect_Suc_le_snd Bolzano_bisect_le]
lemma not_P_Bolzano_bisect:
assumes P: "!!a b c. [| P(a,b); P(b,c); a \<le> b; b \<le> c|] ==> P(a,c)"
and notP: "~ P(a,b)"
and le: "a \<le> b"
shows "~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))"
proof (induct n)
case 0 show ?case using notP by simp
next
case (Suc n)
thus ?case
by (auto simp del: surjective_pairing [symmetric]
simp add: Let_def split_def Bolzano_bisect_le [OF le]
P [of "fst (Bolzano_bisect P a b n)" _ "snd (Bolzano_bisect P a b n)"])
qed
(*Now we re-package P_prem as a formula*)
lemma not_P_Bolzano_bisect':
"[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c);
~ P(a,b); a \<le> b |] ==>
\<forall>n. ~ P(fst(Bolzano_bisect P a b n), snd(Bolzano_bisect P a b n))"
by (blast elim!: not_P_Bolzano_bisect [THEN [2] rev_notE])
lemma lemma_BOLZANO:
"[| \<forall>a b c. P(a,b) & P(b,c) & a \<le> b & b \<le> c --> P(a,c);
\<forall>x. \<exists>d::real. 0 < d &
(\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b));
a \<le> b |]
==> P(a,b)"
apply (rule Bolzano_nest_unique [where P=P, THEN exE], assumption+)
apply (rule tendsto_minus_cancel)
apply (simp (no_asm_simp) add: Bolzano_bisect_diff LIMSEQ_divide_realpow_zero)
apply (rule ccontr)
apply (drule not_P_Bolzano_bisect', assumption+)
apply (rename_tac "l")
apply (drule_tac x = l in spec, clarify)
apply (simp add: LIMSEQ_iff)
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec)
apply (drule_tac P = "%r. 0<r --> ?Q r" and x = "d/2" in spec)
apply (drule real_less_half_sum, auto)
apply (drule_tac x = "fst (Bolzano_bisect P a b (no + noa))" in spec)
apply (drule_tac x = "snd (Bolzano_bisect P a b (no + noa))" in spec)
apply safe
apply (simp_all (no_asm_simp))
apply (rule_tac y = "abs (fst (Bolzano_bisect P a b (no + noa)) - l) + abs (snd (Bolzano_bisect P a b (no + noa)) - l)" in order_le_less_trans)
apply (simp (no_asm_simp) add: abs_if)
apply (rule real_sum_of_halves [THEN subst])
apply (rule add_strict_mono)
apply (simp_all add: diff_minus [symmetric])
done
lemma lemma_BOLZANO2: "((\<forall>a b c. (a \<le> b & b \<le> c & P(a,b) & P(b,c)) --> P(a,c)) &
(\<forall>x. \<exists>d::real. 0 < d &
(\<forall>a b. a \<le> x & x \<le> b & (b-a) < d --> P(a,b))))
--> (\<forall>a b. a \<le> b --> P(a,b))"
apply clarify
apply (blast intro: lemma_BOLZANO)
done
subsection {* Intermediate Value Theorem *}
text {*Prove Contrapositive by Bisection*}
lemma IVT: "[| f(a::real) \<le> (y::real); y \<le> f(b);
a \<le> b;
(\<forall>x. a \<le> x & x \<le> b --> isCont f x) |]
==> \<exists>x. a \<le> x & x \<le> b & f(x) = y"
apply (rule contrapos_pp, assumption)
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> ~ (f (u) \<le> y & y \<le> f (v))" in lemma_BOLZANO2)
apply safe
apply simp_all
apply (simp add: isCont_iff LIM_eq)
apply (rule ccontr)
apply (subgoal_tac "a \<le> x & x \<le> b")
prefer 2
apply simp
apply (drule_tac P = "%d. 0<d --> ?P d" and x = 1 in spec, arith)
apply (drule_tac x = x in spec)+
apply simp
apply (drule_tac P = "%r. ?P r --> (\<exists>s>0. ?Q r s) " and x = "\<bar>y - f x\<bar>" in spec)
apply safe
apply simp
apply (drule_tac x = s in spec, clarify)
apply (cut_tac x = "f x" and y = y in linorder_less_linear, safe)
apply (drule_tac x = "ba-x" in spec)
apply (simp_all add: abs_if)
apply (drule_tac x = "aa-x" in spec)
apply (case_tac "x \<le> aa", simp_all)
done
lemma IVT2: "[| f(b::real) \<le> (y::real); y \<le> f(a);
a \<le> b;
(\<forall>x. a \<le> x & x \<le> b --> isCont f x)
|] ==> \<exists>x. a \<le> x & x \<le> b & f(x) = y"
apply (subgoal_tac "- f a \<le> -y & -y \<le> - f b", clarify)
apply (drule IVT [where f = "%x. - f x"], assumption)
apply simp_all
done
(*HOL style here: object-level formulations*)
lemma IVT_objl: "(f(a::real) \<le> (y::real) & y \<le> f(b) & a \<le> b &
(\<forall>x. a \<le> x & x \<le> b --> isCont f x))
--> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
apply (blast intro: IVT)
done
lemma IVT2_objl: "(f(b::real) \<le> (y::real) & y \<le> f(a) & a \<le> b &
(\<forall>x. a \<le> x & x \<le> b --> isCont f x))
--> (\<exists>x. a \<le> x & x \<le> b & f(x) = y)"
apply (blast intro: IVT2)
done
subsection {* Boundedness of continuous functions *}
text{*By bisection, function continuous on closed interval is bounded above*}
lemma isCont_bounded:
"[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
==> \<exists>M::real. \<forall>x::real. a \<le> x & x \<le> b --> f(x) \<le> M"
apply (cut_tac P = "% (u,v) . a \<le> u & u \<le> v & v \<le> b --> (\<exists>M. \<forall>x. u \<le> x & x \<le> v --> f x \<le> M)" in lemma_BOLZANO2)
apply safe
apply simp_all
apply (rename_tac x xa ya M Ma)
apply (metis linorder_not_less order_le_less order_trans)
apply (case_tac "a \<le> x & x \<le> b")
prefer 2
apply (rule_tac x = 1 in exI, force)
apply (simp add: LIM_eq isCont_iff)
apply (drule_tac x = x in spec, auto)
apply (erule_tac V = "\<forall>M. \<exists>x. a \<le> x & x \<le> b & ~ f x \<le> M" in thin_rl)
apply (drule_tac x = 1 in spec, auto)
apply (rule_tac x = s in exI, clarify)
apply (rule_tac x = "\<bar>f x\<bar> + 1" in exI, clarify)
apply (drule_tac x = "xa-x" in spec)
apply (auto simp add: abs_ge_self)
done
text{*Refine the above to existence of least upper bound*}
lemma lemma_reals_complete: "((\<exists>x. x \<in> S) & (\<exists>y. isUb UNIV S (y::real))) -->
(\<exists>t. isLub UNIV S t)"
by (blast intro: reals_complete)
lemma isCont_has_Ub: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
==> \<exists>M::real. (\<forall>x::real. a \<le> x & x \<le> b --> f(x) \<le> M) &
(\<forall>N. N < M --> (\<exists>x. a \<le> x & x \<le> b & N < f(x)))"
apply (cut_tac S = "Collect (%y. \<exists>x. a \<le> x & x \<le> b & y = f x)"
in lemma_reals_complete)
apply auto
apply (drule isCont_bounded, assumption)
apply (auto simp add: isUb_def leastP_def isLub_def setge_def setle_def)
apply (rule exI, auto)
apply (auto dest!: spec simp add: linorder_not_less)
done
text{*Now show that it attains its upper bound*}
lemma isCont_eq_Ub:
assumes le: "a \<le> b"
and con: "\<forall>x::real. a \<le> x & x \<le> b --> isCont f x"
shows "\<exists>M::real. (\<forall>x. a \<le> x & x \<le> b --> f(x) \<le> M) &
(\<exists>x. a \<le> x & x \<le> b & f(x) = M)"
proof -
from isCont_has_Ub [OF le con]
obtain M where M1: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
and M2: "!!N. N<M ==> \<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x" by blast
show ?thesis
proof (intro exI, intro conjI)
show " \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M" by (rule M1)
show "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M"
proof (rule ccontr)
assume "\<not> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
with M1 have M3: "\<forall>x. a \<le> x & x \<le> b --> f x < M"
by (fastforce simp add: linorder_not_le [symmetric])
hence "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. inverse (M - f x)) x"
by (auto simp add: con)
from isCont_bounded [OF le this]
obtain k where k: "!!x. a \<le> x & x \<le> b --> inverse (M - f x) \<le> k" by auto
have Minv: "!!x. a \<le> x & x \<le> b --> 0 < inverse (M - f (x))"
by (simp add: M3 algebra_simps)
have "!!x. a \<le> x & x \<le> b --> inverse (M - f x) < k+1" using k
by (auto intro: order_le_less_trans [of _ k])
with Minv
have "!!x. a \<le> x & x \<le> b --> inverse(k+1) < inverse(inverse(M - f x))"
by (intro strip less_imp_inverse_less, simp_all)
hence invlt: "!!x. a \<le> x & x \<le> b --> inverse(k+1) < M - f x"
by simp
have "M - inverse (k+1) < M" using k [of a] Minv [of a] le
by (simp, arith)
from M2 [OF this]
obtain x where ax: "a \<le> x & x \<le> b & M - inverse(k+1) < f x" ..
thus False using invlt [of x] by force
qed
qed
qed
text{*Same theorem for lower bound*}
lemma isCont_eq_Lb: "[| a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
==> \<exists>M::real. (\<forall>x::real. a \<le> x & x \<le> b --> M \<le> f(x)) &
(\<exists>x. a \<le> x & x \<le> b & f(x) = M)"
apply (subgoal_tac "\<forall>x. a \<le> x & x \<le> b --> isCont (%x. - (f x)) x")
prefer 2 apply (blast intro: isCont_minus)
apply (drule_tac f = "(%x. - (f x))" in isCont_eq_Ub)
apply safe
apply auto
done
text{*Another version.*}
lemma isCont_Lb_Ub: "[|a \<le> b; \<forall>x. a \<le> x & x \<le> b --> isCont f x |]
==> \<exists>L M::real. (\<forall>x::real. a \<le> x & x \<le> b --> L \<le> f(x) & f(x) \<le> M) &
(\<forall>y. L \<le> y & y \<le> M --> (\<exists>x. a \<le> x & x \<le> b & (f(x) = y)))"
apply (frule isCont_eq_Lb)
apply (frule_tac [2] isCont_eq_Ub)
apply (assumption+, safe)
apply (rule_tac x = "f x" in exI)
apply (rule_tac x = "f xa" in exI, simp, safe)
apply (cut_tac x = x and y = xa in linorder_linear, safe)
apply (cut_tac f = f and a = x and b = xa and y = y in IVT_objl)
apply (cut_tac [2] f = f and a = xa and b = x and y = y in IVT2_objl, safe)
apply (rule_tac [2] x = xb in exI)
apply (rule_tac [4] x = xb in exI, simp_all)
done
subsection {* Local extrema *}
text{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*}
lemma DERIV_pos_inc_right:
fixes f :: "real => real"
assumes der: "DERIV f x :> l"
and l: "0 < l"
shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x + h)"
proof -
from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]]
have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)"
by (simp add: diff_minus)
then obtain s
where s: "0 < s"
and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l"
by auto
thus ?thesis
proof (intro exI conjI strip)
show "0<s" using s .
fix h::real
assume "0 < h" "h < s"
with all [of h] show "f x < f (x+h)"
proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric]
split add: split_if_asm)
assume "~ (f (x+h) - f x) / h < l" and h: "0 < h"
with l
have "0 < (f (x+h) - f x) / h" by arith
thus "f x < f (x+h)"
by (simp add: pos_less_divide_eq h)
qed
qed
qed
lemma DERIV_neg_dec_left:
fixes f :: "real => real"
assumes der: "DERIV f x :> l"
and l: "l < 0"
shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x-h)"
proof -
from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]]
have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)"
by (simp add: diff_minus)
then obtain s
where s: "0 < s"
and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l"
by auto
thus ?thesis
proof (intro exI conjI strip)
show "0<s" using s .
fix h::real
assume "0 < h" "h < s"
with all [of "-h"] show "f x < f (x-h)"
proof (simp add: abs_if pos_less_divide_eq diff_minus [symmetric]
split add: split_if_asm)
assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h"
with l
have "0 < (f (x-h) - f x) / h" by arith
thus "f x < f (x-h)"
by (simp add: pos_less_divide_eq h)
qed
qed
qed
lemma DERIV_pos_inc_left:
fixes f :: "real => real"
shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x - h) < f(x)"
apply (rule DERIV_neg_dec_left [of "%x. - f x" x "-l", simplified])
apply (auto simp add: DERIV_minus)
done
lemma DERIV_neg_dec_right:
fixes f :: "real => real"
shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x) > f(x + h)"
apply (rule DERIV_pos_inc_right [of "%x. - f x" x "-l", simplified])
apply (auto simp add: DERIV_minus)
done
lemma DERIV_local_max:
fixes f :: "real => real"
assumes der: "DERIV f x :> l"
and d: "0 < d"
and le: "\<forall>y. \<bar>x-y\<bar> < d --> f(y) \<le> f(x)"
shows "l = 0"
proof (cases rule: linorder_cases [of l 0])
case equal thus ?thesis .
next
case less
from DERIV_neg_dec_left [OF der less]
obtain d' where d': "0 < d'"
and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x-h)" by blast
from real_lbound_gt_zero [OF d d']
obtain e where "0 < e \<and> e < d \<and> e < d'" ..
with lt le [THEN spec [where x="x-e"]]
show ?thesis by (auto simp add: abs_if)
next
case greater
from DERIV_pos_inc_right [OF der greater]
obtain d' where d': "0 < d'"
and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" by blast
from real_lbound_gt_zero [OF d d']
obtain e where "0 < e \<and> e < d \<and> e < d'" ..
with lt le [THEN spec [where x="x+e"]]
show ?thesis by (auto simp add: abs_if)
qed
text{*Similar theorem for a local minimum*}
lemma DERIV_local_min:
fixes f :: "real => real"
shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) \<le> f(y) |] ==> l = 0"
by (drule DERIV_minus [THEN DERIV_local_max], auto)
text{*In particular, if a function is locally flat*}
lemma DERIV_local_const:
fixes f :: "real => real"
shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) = f(y) |] ==> l = 0"
by (auto dest!: DERIV_local_max)
subsection {* Rolle's Theorem *}
text{*Lemma about introducing open ball in open interval*}
lemma lemma_interval_lt:
"[| a < x; x < b |]
==> \<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a < y & y < b)"
apply (simp add: abs_less_iff)
apply (insert linorder_linear [of "x-a" "b-x"], safe)
apply (rule_tac x = "x-a" in exI)
apply (rule_tac [2] x = "b-x" in exI, auto)
done
lemma lemma_interval: "[| a < x; x < b |] ==>
\<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a \<le> y & y \<le> b)"
apply (drule lemma_interval_lt, auto)
apply force
done
text{*Rolle's Theorem.
If @{term f} is defined and continuous on the closed interval
@{text "[a,b]"} and differentiable on the open interval @{text "(a,b)"},
and @{term "f(a) = f(b)"},
then there exists @{text "x0 \<in> (a,b)"} such that @{term "f'(x0) = 0"}*}
theorem Rolle:
assumes lt: "a < b"
and eq: "f(a) = f(b)"
and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x"
shows "\<exists>z::real. a < z & z < b & DERIV f z :> 0"
proof -
have le: "a \<le> b" using lt by simp
from isCont_eq_Ub [OF le con]
obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x"
and alex: "a \<le> x" and xleb: "x \<le> b"
by blast
from isCont_eq_Lb [OF le con]
obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z"
and alex': "a \<le> x'" and x'leb: "x' \<le> b"
by blast
show ?thesis
proof cases
assume axb: "a < x & x < b"
--{*@{term f} attains its maximum within the interval*}
hence ax: "a<x" and xb: "x<b" by arith +
from lemma_interval [OF ax xb]
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
by blast
hence bound': "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> f y \<le> f x" using x_max
by blast
from differentiableD [OF dif [OF axb]]
obtain l where der: "DERIV f x :> l" ..
have "l=0" by (rule DERIV_local_max [OF der d bound'])
--{*the derivative at a local maximum is zero*}
thus ?thesis using ax xb der by auto
next
assume notaxb: "~ (a < x & x < b)"
hence xeqab: "x=a | x=b" using alex xleb by arith
hence fb_eq_fx: "f b = f x" by (auto simp add: eq)
show ?thesis
proof cases
assume ax'b: "a < x' & x' < b"
--{*@{term f} attains its minimum within the interval*}
hence ax': "a<x'" and x'b: "x'<b" by arith+
from lemma_interval [OF ax' x'b]
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
by blast
hence bound': "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> f x' \<le> f y" using x'_min
by blast
from differentiableD [OF dif [OF ax'b]]
obtain l where der: "DERIV f x' :> l" ..
have "l=0" by (rule DERIV_local_min [OF der d bound'])
--{*the derivative at a local minimum is zero*}
thus ?thesis using ax' x'b der by auto
next
assume notax'b: "~ (a < x' & x' < b)"
--{*@{term f} is constant througout the interval*}
hence x'eqab: "x'=a | x'=b" using alex' x'leb by arith
hence fb_eq_fx': "f b = f x'" by (auto simp add: eq)
from dense [OF lt]
obtain r where ar: "a < r" and rb: "r < b" by blast
from lemma_interval [OF ar rb]
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
by blast
have eq_fb: "\<forall>z. a \<le> z --> z \<le> b --> f z = f b"
proof (clarify)
fix z::real
assume az: "a \<le> z" and zb: "z \<le> b"
show "f z = f b"
proof (rule order_antisym)
show "f z \<le> f b" by (simp add: fb_eq_fx x_max az zb)
show "f b \<le> f z" by (simp add: fb_eq_fx' x'_min az zb)
qed
qed
have bound': "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> f r = f y"
proof (intro strip)
fix y::real
assume lt: "\<bar>r-y\<bar> < d"
hence "f y = f b" by (simp add: eq_fb bound)
thus "f r = f y" by (simp add: eq_fb ar rb order_less_imp_le)
qed
from differentiableD [OF dif [OF conjI [OF ar rb]]]
obtain l where der: "DERIV f r :> l" ..
have "l=0" by (rule DERIV_local_const [OF der d bound'])
--{*the derivative of a constant function is zero*}
thus ?thesis using ar rb der by auto
qed
qed
qed
subsection{*Mean Value Theorem*}
lemma lemma_MVT:
"f a - (f b - f a)/(b-a) * a = f b - (f b - f a)/(b-a) * (b::real)"
proof cases
assume "a=b" thus ?thesis by simp
next
assume "a\<noteq>b"
hence ba: "b-a \<noteq> 0" by arith
show ?thesis
by (rule real_mult_left_cancel [OF ba, THEN iffD1],
simp add: right_diff_distrib,
simp add: left_diff_distrib)
qed
theorem MVT:
assumes lt: "a < b"
and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable x"
shows "\<exists>l z::real. a < z & z < b & DERIV f z :> l &
(f(b) - f(a) = (b-a) * l)"
proof -
let ?F = "%x. f x - ((f b - f a) / (b-a)) * x"
have contF: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x"
using con by (fast intro: isCont_intros)
have difF: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable x"
proof (clarify)
fix x::real
assume ax: "a < x" and xb: "x < b"
from differentiableD [OF dif [OF conjI [OF ax xb]]]
obtain l where der: "DERIV f x :> l" ..
show "?F differentiable x"
by (rule differentiableI [where D = "l - (f b - f a)/(b-a)"],
blast intro: DERIV_diff DERIV_cmult_Id der)
qed
from Rolle [where f = ?F, OF lt lemma_MVT contF difF]
obtain z where az: "a < z" and zb: "z < b" and der: "DERIV ?F z :> 0"
by blast
have "DERIV (%x. ((f b - f a)/(b-a)) * x) z :> (f b - f a)/(b-a)"
by (rule DERIV_cmult_Id)
hence derF: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z
:> 0 + (f b - f a) / (b - a)"
by (rule DERIV_add [OF der])
show ?thesis
proof (intro exI conjI)
show "a < z" using az .
show "z < b" using zb .
show "f b - f a = (b - a) * ((f b - f a)/(b-a))" by (simp)
show "DERIV f z :> ((f b - f a)/(b-a))" using derF by simp
qed
qed
lemma MVT2:
"[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
==> \<exists>z::real. a < z & z < b & (f b - f a = (b - a) * f'(z))"
apply (drule MVT)
apply (blast intro: DERIV_isCont)
apply (force dest: order_less_imp_le simp add: differentiable_def)
apply (blast dest: DERIV_unique order_less_imp_le)
done
text{*A function is constant if its derivative is 0 over an interval.*}
lemma DERIV_isconst_end:
fixes f :: "real => real"
shows "[| a < b;
\<forall>x. a \<le> x & x \<le> b --> isCont f x;
\<forall>x. a < x & x < b --> DERIV f x :> 0 |]
==> f b = f a"
apply (drule MVT, assumption)
apply (blast intro: differentiableI)
apply (auto dest!: DERIV_unique simp add: diff_eq_eq)
done
lemma DERIV_isconst1:
fixes f :: "real => real"
shows "[| a < b;
\<forall>x. a \<le> x & x \<le> b --> isCont f x;
\<forall>x. a < x & x < b --> DERIV f x :> 0 |]
==> \<forall>x. a \<le> x & x \<le> b --> f x = f a"
apply safe
apply (drule_tac x = a in order_le_imp_less_or_eq, safe)
apply (drule_tac b = x in DERIV_isconst_end, auto)
done
lemma DERIV_isconst2:
fixes f :: "real => real"
shows "[| a < b;
\<forall>x. a \<le> x & x \<le> b --> isCont f x;
\<forall>x. a < x & x < b --> DERIV f x :> 0;
a \<le> x; x \<le> b |]
==> f x = f a"
apply (blast dest: DERIV_isconst1)
done
lemma DERIV_isconst3: fixes a b x y :: real
assumes "a < b" and "x \<in> {a <..< b}" and "y \<in> {a <..< b}"
assumes derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
shows "f x = f y"
proof (cases "x = y")
case False
let ?a = "min x y"
let ?b = "max x y"
have "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> DERIV f z :> 0"
proof (rule allI, rule impI)
fix z :: real assume "?a \<le> z \<and> z \<le> ?b"
hence "a < z" and "z < b" using `x \<in> {a <..< b}` and `y \<in> {a <..< b}` by auto
hence "z \<in> {a<..<b}" by auto
thus "DERIV f z :> 0" by (rule derivable)
qed
hence isCont: "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> isCont f z"
and DERIV: "\<forall>z. ?a < z \<and> z < ?b \<longrightarrow> DERIV f z :> 0" using DERIV_isCont by auto
have "?a < ?b" using `x \<noteq> y` by auto
from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
show ?thesis by auto
qed auto
lemma DERIV_isconst_all:
fixes f :: "real => real"
shows "\<forall>x. DERIV f x :> 0 ==> f(x) = f(y)"
apply (rule linorder_cases [of x y])
apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+
done
lemma DERIV_const_ratio_const:
fixes f :: "real => real"
shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a)) = (b-a) * k"
apply (rule linorder_cases [of a b], auto)
apply (drule_tac [!] f = f in MVT)
apply (auto dest: DERIV_isCont DERIV_unique simp add: differentiable_def)
apply (auto dest: DERIV_unique simp add: ring_distribs diff_minus)
done
lemma DERIV_const_ratio_const2:
fixes f :: "real => real"
shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b-a) = k"
apply (rule_tac c1 = "b-a" in real_mult_right_cancel [THEN iffD1])
apply (auto dest!: DERIV_const_ratio_const simp add: mult_assoc)
done
lemma real_average_minus_first [simp]: "((a + b) /2 - a) = (b-a)/(2::real)"
by (simp)
lemma real_average_minus_second [simp]: "((b + a)/2 - a) = (b-a)/(2::real)"
by (simp)
text{*Gallileo's "trick": average velocity = av. of end velocities*}
lemma DERIV_const_average:
fixes v :: "real => real"
assumes neq: "a \<noteq> (b::real)"
and der: "\<forall>x. DERIV v x :> k"
shows "v ((a + b)/2) = (v a + v b)/2"
proof (cases rule: linorder_cases [of a b])
case equal with neq show ?thesis by simp
next
case less
have "(v b - v a) / (b - a) = k"
by (rule DERIV_const_ratio_const2 [OF neq der])
hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
ultimately show ?thesis using neq by force
next
case greater
have "(v b - v a) / (b - a) = k"
by (rule DERIV_const_ratio_const2 [OF neq der])
hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
ultimately show ?thesis using neq by (force simp add: add_commute)
qed
(* A function with positive derivative is increasing.
A simple proof using the MVT, by Jeremy Avigad. And variants.
*)
lemma DERIV_pos_imp_increasing:
fixes a::real and b::real and f::"real => real"
assumes "a < b" and "\<forall>x. a \<le> x & x \<le> b --> (EX y. DERIV f x :> y & y > 0)"
shows "f a < f b"
proof (rule ccontr)
assume f: "~ f a < f b"
have "EX l z. a < z & z < b & DERIV f z :> l
& f b - f a = (b - a) * l"
apply (rule MVT)
using assms
apply auto
apply (metis DERIV_isCont)
apply (metis differentiableI less_le)
done
then obtain l z where z: "a < z" "z < b" "DERIV f z :> l"
and "f b - f a = (b - a) * l"
by auto
with assms f have "~(l > 0)"
by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)
with assms z show False
by (metis DERIV_unique less_le)
qed
lemma DERIV_nonneg_imp_nondecreasing:
fixes a::real and b::real and f::"real => real"
assumes "a \<le> b" and
"\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<ge> 0)"
shows "f a \<le> f b"
proof (rule ccontr, cases "a = b")
assume "~ f a \<le> f b" and "a = b"
then show False by auto
next
assume A: "~ f a \<le> f b"
assume B: "a ~= b"
with assms have "EX l z. a < z & z < b & DERIV f z :> l
& f b - f a = (b - a) * l"
apply -
apply (rule MVT)
apply auto
apply (metis DERIV_isCont)
apply (metis differentiableI less_le)
done
then obtain l z where z: "a < z" "z < b" "DERIV f z :> l"
and C: "f b - f a = (b - a) * l"
by auto
with A have "a < b" "f b < f a" by auto
with C have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)
(metis A add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)
with assms z show False
by (metis DERIV_unique order_less_imp_le)
qed
lemma DERIV_neg_imp_decreasing:
fixes a::real and b::real and f::"real => real"
assumes "a < b" and
"\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y < 0)"
shows "f a > f b"
proof -
have "(%x. -f x) a < (%x. -f x) b"
apply (rule DERIV_pos_imp_increasing [of a b "%x. -f x"])
using assms
apply auto
apply (metis DERIV_minus neg_0_less_iff_less)
done
thus ?thesis
by simp
qed
lemma DERIV_nonpos_imp_nonincreasing:
fixes a::real and b::real and f::"real => real"
assumes "a \<le> b" and
"\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<le> 0)"
shows "f a \<ge> f b"
proof -
have "(%x. -f x) a \<le> (%x. -f x) b"
apply (rule DERIV_nonneg_imp_nondecreasing [of a b "%x. -f x"])
using assms
apply auto
apply (metis DERIV_minus neg_0_le_iff_le)
done
thus ?thesis
by simp
qed
subsection {* Continuous injective functions *}
text{*Dull lemma: an continuous injection on an interval must have a
strict maximum at an end point, not in the middle.*}
lemma lemma_isCont_inj:
fixes f :: "real \<Rightarrow> real"
assumes d: "0 < d"
and inj [rule_format]: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
shows "\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z"
proof (rule ccontr)
assume "~ (\<exists>z. \<bar>z-x\<bar> \<le> d & f x < f z)"
hence all [rule_format]: "\<forall>z. \<bar>z - x\<bar> \<le> d --> f z \<le> f x" by auto
show False
proof (cases rule: linorder_le_cases [of "f(x-d)" "f(x+d)"])
case le
from d cont all [of "x+d"]
have flef: "f(x+d) \<le> f x"
and xlex: "x - d \<le> x"
and cont': "\<forall>z. x - d \<le> z \<and> z \<le> x \<longrightarrow> isCont f z"
by (auto simp add: abs_if)
from IVT [OF le flef xlex cont']
obtain x' where "x-d \<le> x'" "x' \<le> x" "f x' = f(x+d)" by blast
moreover
hence "g(f x') = g (f(x+d))" by simp
ultimately show False using d inj [of x'] inj [of "x+d"]
by (simp add: abs_le_iff)
next
case ge
from d cont all [of "x-d"]
have flef: "f(x-d) \<le> f x"
and xlex: "x \<le> x+d"
and cont': "\<forall>z. x \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z"
by (auto simp add: abs_if)
from IVT2 [OF ge flef xlex cont']
obtain x' where "x \<le> x'" "x' \<le> x+d" "f x' = f(x-d)" by blast
moreover
hence "g(f x') = g (f(x-d))" by simp
ultimately show False using d inj [of x'] inj [of "x-d"]
by (simp add: abs_le_iff)
qed
qed
text{*Similar version for lower bound.*}
lemma lemma_isCont_inj2:
fixes f g :: "real \<Rightarrow> real"
shows "[|0 < d; \<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z;
\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z |]
==> \<exists>z. \<bar>z-x\<bar> \<le> d & f z < f x"
apply (insert lemma_isCont_inj
[where f = "%x. - f x" and g = "%y. g(-y)" and x = x and d = d])
apply (simp add: linorder_not_le)
done
text{*Show there's an interval surrounding @{term "f(x)"} in
@{text "f[[x - d, x + d]]"} .*}
lemma isCont_inj_range:
fixes f :: "real \<Rightarrow> real"
assumes d: "0 < d"
and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
shows "\<exists>e>0. \<forall>y. \<bar>y - f x\<bar> \<le> e --> (\<exists>z. \<bar>z-x\<bar> \<le> d & f z = y)"
proof -
have "x-d \<le> x+d" "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> isCont f z" using cont d
by (auto simp add: abs_le_iff)
from isCont_Lb_Ub [OF this]
obtain L M
where all1 [rule_format]: "\<forall>z. x-d \<le> z \<and> z \<le> x+d \<longrightarrow> L \<le> f z \<and> f z \<le> M"
and all2 [rule_format]:
"\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>z. x-d \<le> z \<and> z \<le> x+d \<and> f z = y)"
by auto
with d have "L \<le> f x & f x \<le> M" by simp
moreover have "L \<noteq> f x"
proof -
from lemma_isCont_inj2 [OF d inj cont]
obtain u where "\<bar>u - x\<bar> \<le> d" "f u < f x" by auto
thus ?thesis using all1 [of u] by arith
qed
moreover have "f x \<noteq> M"
proof -
from lemma_isCont_inj [OF d inj cont]
obtain u where "\<bar>u - x\<bar> \<le> d" "f x < f u" by auto
thus ?thesis using all1 [of u] by arith
qed
ultimately have "L < f x & f x < M" by arith
hence "0 < f x - L" "0 < M - f x" by arith+
from real_lbound_gt_zero [OF this]
obtain e where e: "0 < e" "e < f x - L" "e < M - f x" by auto
thus ?thesis
proof (intro exI conjI)
show "0<e" using e(1) .
show "\<forall>y. \<bar>y - f x\<bar> \<le> e \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y)"
proof (intro strip)
fix y::real
assume "\<bar>y - f x\<bar> \<le> e"
with e have "L \<le> y \<and> y \<le> M" by arith
from all2 [OF this]
obtain z where "x - d \<le> z" "z \<le> x + d" "f z = y" by blast
thus "\<exists>z. \<bar>z - x\<bar> \<le> d \<and> f z = y"
by (force simp add: abs_le_iff)
qed
qed
qed
text{*Continuity of inverse function*}
lemma isCont_inverse_function:
fixes f g :: "real \<Rightarrow> real"
assumes d: "0 < d"
and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d --> g(f z) = z"
and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d --> isCont f z"
shows "isCont g (f x)"
proof (simp add: isCont_iff LIM_eq)
show "\<forall>r. 0 < r \<longrightarrow>
(\<exists>s>0. \<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r)"
proof (intro strip)
fix r::real
assume r: "0<r"
from real_lbound_gt_zero [OF r d]
obtain e where e: "0 < e" and e_lt: "e < r \<and> e < d" by blast
with inj cont
have e_simps: "\<forall>z. \<bar>z-x\<bar> \<le> e --> g (f z) = z"
"\<forall>z. \<bar>z-x\<bar> \<le> e --> isCont f z" by auto
from isCont_inj_range [OF e this]
obtain e' where e': "0 < e'"
and all: "\<forall>y. \<bar>y - f x\<bar> \<le> e' \<longrightarrow> (\<exists>z. \<bar>z - x\<bar> \<le> e \<and> f z = y)"
by blast
show "\<exists>s>0. \<forall>z. z\<noteq>0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>g(f x + z) - g(f x)\<bar> < r"
proof (intro exI conjI)
show "0<e'" using e' .
show "\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < e' \<longrightarrow> \<bar>g (f x + z) - g (f x)\<bar> < r"
proof (intro strip)
fix z::real
assume z: "z \<noteq> 0 \<and> \<bar>z\<bar> < e'"
with e e_lt e_simps all [rule_format, of "f x + z"]
show "\<bar>g (f x + z) - g (f x)\<bar> < r" by force
qed
qed
qed
qed
text {* Derivative of inverse function *}
lemma DERIV_inverse_function:
fixes f g :: "real \<Rightarrow> real"
assumes der: "DERIV f (g x) :> D"
assumes neq: "D \<noteq> 0"
assumes a: "a < x" and b: "x < b"
assumes inj: "\<forall>y. a < y \<and> y < b \<longrightarrow> f (g y) = y"
assumes cont: "isCont g x"
shows "DERIV g x :> inverse D"
unfolding DERIV_iff2
proof (rule LIM_equal2)
show "0 < min (x - a) (b - x)"
using a b by arith
next
fix y
assume "norm (y - x) < min (x - a) (b - x)"
hence "a < y" and "y < b"
by (simp_all add: abs_less_iff)
thus "(g y - g x) / (y - x) =
inverse ((f (g y) - x) / (g y - g x))"
by (simp add: inj)
next
have "(\<lambda>z. (f z - f (g x)) / (z - g x)) -- g x --> D"
by (rule der [unfolded DERIV_iff2])
hence 1: "(\<lambda>z. (f z - x) / (z - g x)) -- g x --> D"
using inj a b by simp
have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
proof (safe intro!: exI)
show "0 < min (x - a) (b - x)"
using a b by simp
next
fix y
assume "norm (y - x) < min (x - a) (b - x)"
hence y: "a < y" "y < b"
by (simp_all add: abs_less_iff)
assume "g y = g x"
hence "f (g y) = f (g x)" by simp
hence "y = x" using inj y a b by simp
also assume "y \<noteq> x"
finally show False by simp
qed
have "(\<lambda>y. (f (g y) - x) / (g y - g x)) -- x --> D"
using cont 1 2 by (rule isCont_LIM_compose2)
thus "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x)))
-- x --> inverse D"
using neq by (rule tendsto_inverse)
qed
subsection {* Generalized Mean Value Theorem *}
theorem GMVT:
fixes a b :: real
assumes alb: "a < b"
and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable x"
and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable x"
shows "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> ((f b - f a) * g'c) = ((g b - g a) * f'c)"
proof -
let ?h = "\<lambda>x. (f b - f a)*(g x) - (g b - g a)*(f x)"
from assms have "a < b" by simp
moreover have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?h x"
using fc gc by simp
moreover have "\<forall>x. a < x \<and> x < b \<longrightarrow> ?h differentiable x"
using fd gd by simp
ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" by (rule MVT)
then obtain l where ldef: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
then obtain c where cdef: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..
from cdef have cint: "a < c \<and> c < b" by auto
with gd have "g differentiable c" by simp
hence "\<exists>D. DERIV g c :> D" by (rule differentiableD)
then obtain g'c where g'cdef: "DERIV g c :> g'c" ..
from cdef have "a < c \<and> c < b" by auto
with fd have "f differentiable c" by simp
hence "\<exists>D. DERIV f c :> D" by (rule differentiableD)
then obtain f'c where f'cdef: "DERIV f c :> f'c" ..
from cdef have "DERIV ?h c :> l" by auto
moreover have "DERIV ?h c :> g'c * (f b - f a) - f'c * (g b - g a)"
using g'cdef f'cdef by (auto intro!: DERIV_intros)
ultimately have leq: "l = g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)
{
from cdef have "?h b - ?h a = (b - a) * l" by auto
also with leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
finally have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
}
moreover
{
have "?h b - ?h a =
((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
by (simp add: algebra_simps)
hence "?h b - ?h a = 0" by auto
}
ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
hence "g'c * (f b - f a) = f'c * (g b - g a)" by simp
hence "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: mult_ac)
with g'cdef f'cdef cint show ?thesis by auto
qed
subsection {* Theorems about Limits *}
(* need to rename second isCont_inverse *)
lemma isCont_inv_fun:
fixes f g :: "real \<Rightarrow> real"
shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;
\<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]
==> isCont g (f x)"
by (rule isCont_inverse_function)
lemma isCont_inv_fun_inv:
fixes f g :: "real \<Rightarrow> real"
shows "[| 0 < d;
\<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z;
\<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |]
==> \<exists>e. 0 < e &
(\<forall>y. 0 < \<bar>y - f(x)\<bar> & \<bar>y - f(x)\<bar> < e --> f(g(y)) = y)"
apply (drule isCont_inj_range)
prefer 2 apply (assumption, assumption, auto)
apply (rule_tac x = e in exI, auto)
apply (rotate_tac 2)
apply (drule_tac x = y in spec, auto)
done
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*}
lemma LIM_fun_gt_zero:
"[| f -- c --> (l::real); 0 < l |]
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> 0 < f x)"
apply (drule (1) LIM_D, clarify)
apply (rule_tac x = s in exI)
apply (simp add: abs_less_iff)
done
lemma LIM_fun_less_zero:
"[| f -- c --> (l::real); l < 0 |]
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x < 0)"
apply (drule LIM_D [where r="-l"], simp, clarify)
apply (rule_tac x = s in exI)
apply (simp add: abs_less_iff)
done
lemma LIM_fun_not_zero:
"[| f -- c --> (l::real); l \<noteq> 0 |]
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x \<noteq> 0)"
apply (rule linorder_cases [of l 0])
apply (drule (1) LIM_fun_less_zero, force)
apply simp
apply (drule (1) LIM_fun_gt_zero, force)
done
lemma GMVT':
fixes f g :: "real \<Rightarrow> real"
assumes "a < b"
assumes isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"
assumes isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"
assumes DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"
assumes DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"
shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"
proof -
have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>
a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
using assms by (intro GMVT) (force simp: differentiable_def)+
then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"
using DERIV_f DERIV_g by (force dest: DERIV_unique)
then show ?thesis
by auto
qed
lemma DERIV_cong_ev: "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
unfolding DERIV_iff2
proof (rule filterlim_cong)
assume "eventually (\<lambda>x. f x = g x) (nhds x)"
moreover then have "f x = g x" by (auto simp: eventually_nhds)
moreover assume "x = y" "u = v"
ultimately show "eventually (\<lambda>xa. (f xa - f x) / (xa - x) = (g xa - g y) / (xa - y)) (at x)"
by (auto simp: eventually_within at_def elim: eventually_elim1)
qed simp_all
lemma DERIV_shift:
"(DERIV f (x + z) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (x + z)) x :> y)"
by (simp add: DERIV_iff field_simps)
lemma DERIV_mirror:
"(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x::real) :: real) x :> - y)"
by (simp add: deriv_def filterlim_at_split filterlim_at_left_to_right
tendsto_minus_cancel_left field_simps conj_commute)
lemma lhopital_right_0:
fixes f0 g0 :: "real \<Rightarrow> real"
assumes f_0: "(f0 ---> 0) (at_right 0)"
assumes g_0: "(g0 ---> 0) (at_right 0)"
assumes ev:
"eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"
"eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
"eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"
"eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"
assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) (at_right 0)"
shows "((\<lambda> x. f0 x / g0 x) ---> x) (at_right 0)"
proof -
def f \<equiv> "\<lambda>x. if x \<le> 0 then 0 else f0 x"
then have "f 0 = 0" by simp
def g \<equiv> "\<lambda>x. if x \<le> 0 then 0 else g0 x"
then have "g 0 = 0" by simp
have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>
DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"
using ev by eventually_elim auto
then obtain a where [arith]: "0 < a"
and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"
and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"
and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"
unfolding eventually_within eventually_at by (auto simp: dist_real_def)
have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"
using g0_neq_0 by (simp add: g_def)
{ fix x assume x: "0 < x" "x < a" then have "DERIV f x :> (f' x)"
by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])
(auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) }
note f = this
{ fix x assume x: "0 < x" "x < a" then have "DERIV g x :> (g' x)"
by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])
(auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) }
note g = this
have "isCont f 0"
using tendsto_const[of "0::real" "at 0"] f_0
unfolding isCont_def f_def
by (intro filterlim_split_at_real)
(auto elim: eventually_elim1
simp add: filterlim_def le_filter_def eventually_within eventually_filtermap)
have "isCont g 0"
using tendsto_const[of "0::real" "at 0"] g_0
unfolding isCont_def g_def
by (intro filterlim_split_at_real)
(auto elim: eventually_elim1
simp add: filterlim_def le_filter_def eventually_within eventually_filtermap)
have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
proof (rule bchoice, rule)
fix x assume "x \<in> {0 <..< a}"
then have x[arith]: "0 < x" "x < a" by auto
with g'_neq_0 g_neq_0 `g 0 = 0` have g': "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"
by auto
have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"
using `isCont f 0` f by (auto intro: DERIV_isCont simp: le_less)
moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"
using `isCont g 0` g by (auto intro: DERIV_isCont simp: le_less)
ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"
using f g `x < a` by (intro GMVT') auto
then guess c ..
moreover
with g'(1)[of c] g'(2) have "(f x - f 0) / (g x - g 0) = f' c / g' c"
by (simp add: field_simps)
ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"
using `f 0 = 0` `g 0 = 0` by (auto intro!: exI[of _ c])
qed
then guess \<zeta> ..
then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"
unfolding eventually_within eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)
moreover
from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"
by eventually_elim auto
then have "((\<lambda>x. norm (\<zeta> x)) ---> 0) (at_right 0)"
by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"])
(auto intro: tendsto_const tendsto_ident_at_within)
then have "(\<zeta> ---> 0) (at_right 0)"
by (rule tendsto_norm_zero_cancel)
with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"
by (auto elim!: eventually_elim1 simp: filterlim_within filterlim_at)
from this lim have "((\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) ---> x) (at_right 0)"
by (rule_tac filterlim_compose[of _ _ _ \<zeta>])
ultimately have "((\<lambda>t. f t / g t) ---> x) (at_right 0)" (is ?P)
by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])
(auto elim: eventually_elim1)
also have "?P \<longleftrightarrow> ?thesis"
by (rule filterlim_cong) (auto simp: f_def g_def eventually_within)
finally show ?thesis .
qed
lemma lhopital_right:
"((f::real \<Rightarrow> real) ---> 0) (at_right x) \<Longrightarrow> (g ---> 0) (at_right x) \<Longrightarrow>
eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>
eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
((\<lambda> x. (f' x / g' x)) ---> y) (at_right x) \<Longrightarrow>
((\<lambda> x. f x / g x) ---> y) (at_right x)"
unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
by (rule lhopital_right_0)
lemma lhopital_left:
"((f::real \<Rightarrow> real) ---> 0) (at_left x) \<Longrightarrow> (g ---> 0) (at_left x) \<Longrightarrow>
eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>
eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
((\<lambda> x. (f' x / g' x)) ---> y) (at_left x) \<Longrightarrow>
((\<lambda> x. f x / g x) ---> y) (at_left x)"
unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
lemma lhopital:
"((f::real \<Rightarrow> real) ---> 0) (at x) \<Longrightarrow> (g ---> 0) (at x) \<Longrightarrow>
eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>
eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
((\<lambda> x. (f' x / g' x)) ---> y) (at x) \<Longrightarrow>
((\<lambda> x. f x / g x) ---> y) (at x)"
unfolding eventually_at_split filterlim_at_split
by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])
lemma lhopital_right_0_at_top:
fixes f g :: "real \<Rightarrow> real"
assumes g_0: "LIM x at_right 0. g x :> at_top"
assumes ev:
"eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
"eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"
"eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"
assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) (at_right 0)"
shows "((\<lambda> x. f x / g x) ---> x) (at_right 0)"
unfolding tendsto_iff
proof safe
fix e :: real assume "0 < e"
with lim[unfolded tendsto_iff, rule_format, of "e / 4"]
have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)" by simp
from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]
obtain a where [arith]: "0 < a"
and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"
and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"
and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"
unfolding eventually_within_le by (auto simp: dist_real_def)
from Df have
"eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"
unfolding eventually_within eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)
moreover
have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"
using g_0 by (auto elim: eventually_elim1 simp: filterlim_at_top_dense)
moreover
have inv_g: "((\<lambda>x. inverse (g x)) ---> 0) (at_right 0)"
using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]
by (rule filterlim_compose)
then have "((\<lambda>x. norm (1 - g a * inverse (g x))) ---> norm (1 - g a * 0)) (at_right 0)"
by (intro tendsto_intros)
then have "((\<lambda>x. norm (1 - g a / g x)) ---> 1) (at_right 0)"
by (simp add: inverse_eq_divide)
from this[unfolded tendsto_iff, rule_format, of 1]
have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"
by (auto elim!: eventually_elim1 simp: dist_real_def)
moreover
from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) ---> norm ((f a - x * g a) * 0)) (at_right 0)"
by (intro tendsto_intros)
then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) ---> 0) (at_right 0)"
by (simp add: inverse_eq_divide)
from this[unfolded tendsto_iff, rule_format, of "e / 2"] `0 < e`
have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"
by (auto simp: dist_real_def)
ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"
proof eventually_elim
fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"
assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"
have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"
using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+
then guess y ..
from this
have [arith]: "t < y" "y < a" and D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"
using `g a < g t` g'_neq_0[of y] by (auto simp add: field_simps)
have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"
by (simp add: field_simps)
have "norm (f t / g t - x) \<le>
norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"
unfolding * by (rule norm_triangle_ineq)
also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"
by (simp add: abs_mult D_eq dist_real_def)
also have "\<dots> < (e / 4) * 2 + e / 2"
using ineq Df[of y] `0 < e` by (intro add_le_less_mono mult_mono) auto
finally show "dist (f t / g t) x < e"
by (simp add: dist_real_def)
qed
qed
lemma lhopital_right_at_top:
"LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
((\<lambda> x. (f' x / g' x)) ---> y) (at_right x) \<Longrightarrow>
((\<lambda> x. f x / g x) ---> y) (at_right x)"
unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
by (rule lhopital_right_0_at_top)
lemma lhopital_left_at_top:
"LIM x at_left x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
((\<lambda> x. (f' x / g' x)) ---> y) (at_left x) \<Longrightarrow>
((\<lambda> x. f x / g x) ---> y) (at_left x)"
unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
lemma lhopital_at_top:
"LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
((\<lambda> x. (f' x / g' x)) ---> y) (at x) \<Longrightarrow>
((\<lambda> x. f x / g x) ---> y) (at x)"
unfolding eventually_at_split filterlim_at_split
by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])
lemma lhospital_at_top_at_top:
fixes f g :: "real \<Rightarrow> real"
assumes g_0: "LIM x at_top. g x :> at_top"
assumes g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"
assumes Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"
assumes Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"
assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) at_top"
shows "((\<lambda> x. f x / g x) ---> x) at_top"
unfolding filterlim_at_top_to_right
proof (rule lhopital_right_0_at_top)
let ?F = "\<lambda>x. f (inverse x)"
let ?G = "\<lambda>x. g (inverse x)"
let ?R = "at_right (0::real)"
let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"
show "LIM x ?R. ?G x :> at_top"
using g_0 unfolding filterlim_at_top_to_right .
show "eventually (\<lambda>x. DERIV ?G x :> ?D g' x) ?R"
unfolding eventually_at_right_to_top
using Dg eventually_ge_at_top[where c="1::real"]
apply eventually_elim
apply (rule DERIV_cong)
apply (rule DERIV_chain'[where f=inverse])
apply (auto intro!: DERIV_inverse)
done
show "eventually (\<lambda>x. DERIV ?F x :> ?D f' x) ?R"
unfolding eventually_at_right_to_top
using Df eventually_ge_at_top[where c="1::real"]
apply eventually_elim
apply (rule DERIV_cong)
apply (rule DERIV_chain'[where f=inverse])
apply (auto intro!: DERIV_inverse)
done
show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"
unfolding eventually_at_right_to_top
using g' eventually_ge_at_top[where c="1::real"]
by eventually_elim auto
show "((\<lambda>x. ?D f' x / ?D g' x) ---> x) ?R"
unfolding filterlim_at_right_to_top
apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])
using eventually_ge_at_top[where c="1::real"]
by eventually_elim simp
qed
end