add countable compacteness; replace finite_range_imp_infinite_repeats by pigeonhole_infinite
(* Title: HOL/Tools/lambda_lifting.ML
Author: Sascha Boehme, TU Muenchen
Lambda-lifting on terms, i.e., replacing (some) lambda-abstractions by
fresh names accompanied with defining equations for these fresh names in
terms of the lambda-abstractions' bodies.
*)
signature LAMBDA_LIFTING =
sig
type context = (term * term) Termtab.table * Proof.context
val init: Proof.context -> context
val is_quantifier: term -> bool
val lift_lambdas1: (term -> bool) -> string option -> term -> context ->
term * context
val finish: context -> term list * Proof.context
val lift_lambdas: string option -> (term -> bool) -> term list ->
Proof.context -> (term list * term list) * Proof.context
end
structure Lambda_Lifting: LAMBDA_LIFTING =
struct
fun mk_def Ts T lhs rhs =
let fun mk_all T t = HOLogic.all_const T $ Abs (Name.uu, T, t)
in fold mk_all Ts (HOLogic.eq_const T $ lhs $ rhs) end
fun mk_abs Ts = fold (fn T => fn t => Abs (Name.uu, T, t)) Ts
fun dest_abs Ts (Abs (_, T, t)) = dest_abs (T :: Ts) t
| dest_abs Ts t = (Ts, t)
fun replace_lambda basename Us Ts t (cx as (defs, ctxt)) =
let
val t1 = mk_abs Us t
val bs = sort int_ord (Term.add_loose_bnos (t1, 0, []))
fun rep i k = if member (op =) bs i then (Bound k, k+1) else (Bound i, k)
val (rs, _) = fold_map rep (0 upto length Ts - 1) 0
val t2 = Term.subst_bounds (rs, t1)
val Ts' = map (nth Ts) bs
val (_, t3) = dest_abs [] t2
val t4 = mk_abs Ts' t2
val T = Term.fastype_of1 (Us @ Ts, t)
fun app f = Term.list_comb (f, map Bound (rev bs))
in
(case Termtab.lookup defs t4 of
SOME (f, _) => (app f, cx)
| NONE =>
let
val (n, ctxt') = yield_singleton Variable.variant_fixes basename ctxt
val (is, UTs) = split_list (map_index I (Us @ Ts'))
val f = Free (n, rev UTs ---> T)
val lhs = Term.list_comb (f, map Bound (rev is))
val def = mk_def UTs (Term.fastype_of1 (Us @ Ts, t)) lhs t3
in (app f, (Termtab.update (t4, (f, def)) defs, ctxt')) end)
end
type context = (term * term) Termtab.table * Proof.context
fun init ctxt = (Termtab.empty, ctxt)
fun is_quantifier (Const (@{const_name All}, _)) = true
| is_quantifier (Const (@{const_name Ex}, _)) = true
| is_quantifier _ = false
fun lift_lambdas1 is_binder basename =
let
val basename' = the_default Name.uu basename
fun traverse Ts (t $ (u as Abs (n, T, body))) =
if is_binder t then
traverse Ts t ##>> traverse (T :: Ts) body #>> (fn (t', body') =>
t' $ Abs (n, T, body'))
else traverse Ts t ##>> traverse Ts u #>> (op $)
| traverse Ts (t as Abs _) =
let val (Us, u) = dest_abs [] t
in traverse (Us @ Ts) u #-> replace_lambda basename' Us Ts end
| traverse Ts (t $ u) = traverse Ts t ##>> traverse Ts u #>> (op $)
| traverse _ t = pair t
in traverse [] end
fun finish (defs, ctxt) = (Termtab.fold (cons o snd o snd) defs [], ctxt)
fun lift_lambdas basename is_binder ts ctxt =
init ctxt
|> fold_map (lift_lambdas1 is_binder basename) ts
|-> (fn ts' => finish #>> pair ts')
end