add countable compacteness; replace finite_range_imp_infinite_repeats by pigeonhole_infinite
(* Title: HOL/Tools/split_rule.ML
Author: Stefan Berghofer, David von Oheimb, and Markus Wenzel, TU Muenchen
Some tools for managing tupled arguments and abstractions in rules.
*)
signature SPLIT_RULE =
sig
val split_rule_var: term -> thm -> thm
val split_rule: thm -> thm
val complete_split_rule: thm -> thm
val setup: theory -> theory
end;
structure Split_Rule: SPLIT_RULE =
struct
(** split rules **)
fun internal_split_const (Ta, Tb, Tc) =
Const (@{const_name Product_Type.internal_split},
[[Ta, Tb] ---> Tc, HOLogic.mk_prodT (Ta, Tb)] ---> Tc);
val eval_internal_split =
hol_simplify [@{thm internal_split_def}] o hol_simplify [@{thm internal_split_conv}];
val remove_internal_split = eval_internal_split o split_all;
(*In ap_split S T u, term u expects separate arguments for the factors of S,
with result type T. The call creates a new term expecting one argument
of type S.*)
fun ap_split (Type (@{type_name Product_Type.prod}, [T1, T2])) T3 u =
internal_split_const (T1, T2, T3) $
Abs ("v", T1,
ap_split T2 T3
((ap_split T1 (HOLogic.flatten_tupleT T2 ---> T3) (incr_boundvars 1 u)) $
Bound 0))
| ap_split T T3 u = u;
(*Curries any Var of function type in the rule*)
fun split_rule_var' (t as Var (v, Type ("fun", [T1, T2]))) rl =
let val T' = HOLogic.flatten_tupleT T1 ---> T2;
val newt = ap_split T1 T2 (Var (v, T'));
val cterm = Thm.cterm_of (Thm.theory_of_thm rl);
in Thm.instantiate ([], [(cterm t, cterm newt)]) rl end
| split_rule_var' t rl = rl;
(* complete splitting of partially split rules *)
fun ap_split' (T::Ts) U u = Abs ("v", T, ap_split' Ts U
(ap_split T (maps HOLogic.flatten_tupleT Ts ---> U)
(incr_boundvars 1 u) $ Bound 0))
| ap_split' _ _ u = u;
fun complete_split_rule_var (t as Var (v, T), ts) (rl, vs) =
let
val cterm = Thm.cterm_of (Thm.theory_of_thm rl)
val (Us', U') = strip_type T;
val Us = take (length ts) Us';
val U = drop (length ts) Us' ---> U';
val T' = maps HOLogic.flatten_tupleT Us ---> U;
fun mk_tuple (v as Var ((a, _), T)) (xs, insts) =
let
val Ts = HOLogic.flatten_tupleT T;
val ys = Name.variant_list xs (replicate (length Ts) a);
in (xs @ ys, (cterm v, cterm (HOLogic.mk_ptuple (HOLogic.flat_tupleT_paths T) T
(map (Var o apfst (rpair 0)) (ys ~~ Ts))))::insts)
end
| mk_tuple _ x = x;
val newt = ap_split' Us U (Var (v, T'));
val cterm = Thm.cterm_of (Thm.theory_of_thm rl);
val (vs', insts) = fold mk_tuple ts (vs, []);
in
(Drule.instantiate_normalize ([], [(cterm t, cterm newt)] @ insts) rl, vs')
end
| complete_split_rule_var _ x = x;
fun collect_vars (Abs (_, _, t)) = collect_vars t
| collect_vars t =
(case strip_comb t of
(v as Var _, ts) => cons (v, ts)
| (t, ts) => fold collect_vars ts);
val split_rule_var = (Drule.export_without_context o remove_internal_split) oo split_rule_var';
(*curries ALL function variables occurring in a rule's conclusion*)
fun split_rule rl =
fold_rev split_rule_var' (Misc_Legacy.term_vars (concl_of rl)) rl
|> remove_internal_split
|> Drule.export_without_context;
(*curries ALL function variables*)
fun complete_split_rule rl =
let
val prop = Thm.prop_of rl;
val xs = Term.fold_aterms (fn Var ((x, _), _) => insert (op =) x | _ => I) prop [];
val vars = collect_vars prop [];
in
fst (fold_rev complete_split_rule_var vars (rl, xs))
|> remove_internal_split
|> Drule.export_without_context
|> Rule_Cases.save rl
end;
(* attribute syntax *)
val setup =
Attrib.setup @{binding split_format}
(Scan.lift
(Args.parens (Args.$$$ "complete") >> K (Thm.rule_attribute (K complete_split_rule))))
"split pair-typed subterms in premises, or function arguments" #>
Attrib.setup @{binding split_rule} (Scan.succeed (Thm.rule_attribute (K split_rule)))
"curries ALL function variables occurring in a rule's conclusion";
end;