(* Title: HOL/Algebra/Group.thy
Author: Clemens Ballarin, started 4 February 2003
Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
*)
theory Group
imports Complete_Lattice "~~/src/HOL/Library/FuncSet"
begin
section \<open>Monoids and Groups\<close>
subsection \<open>Definitions\<close>
text \<open>
Definitions follow @{cite "Jacobson:1985"}.
\<close>
record 'a monoid = "'a partial_object" +
mult :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<otimes>\<index>" 70)
one :: 'a ("\<one>\<index>")
definition
m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\<index> _" [81] 80)
where "inv\<^bsub>G\<^esub> x = (THE y. y \<in> carrier G & x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> & y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)"
definition
Units :: "_ => 'a set"
\<comment>\<open>The set of invertible elements\<close>
where "Units G = {y. y \<in> carrier G & (\<exists>x \<in> carrier G. x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> & y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)}"
consts
pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr "'(^')\<index>" 75)
overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
begin
definition "nat_pow G a n = rec_nat \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a) n"
end
overloading int_pow == "pow :: [_, 'a, int] => 'a"
begin
definition "int_pow G a z =
(let p = rec_nat \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a)
in if z < 0 then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))"
end
lemma int_pow_int: "x (^)\<^bsub>G\<^esub> (int n) = x (^)\<^bsub>G\<^esub> n"
by(simp add: int_pow_def nat_pow_def)
locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G"
and m_assoc:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk>
\<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and one_closed [intro, simp]: "\<one> \<in> carrier G"
and l_one [simp]: "x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x"
and r_one [simp]: "x \<in> carrier G \<Longrightarrow> x \<otimes> \<one> = x"
lemma monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
and one_closed: "\<one> \<in> carrier G"
and m_assoc:
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
and r_one: "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x"
shows "monoid G"
by (fast intro!: monoid.intro intro: assms)
lemma (in monoid) Units_closed [dest]:
"x \<in> Units G ==> x \<in> carrier G"
by (unfold Units_def) fast
lemma (in monoid) inv_unique:
assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>"
and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G"
shows "y = y'"
proof -
from G eq have "y = y \<otimes> (x \<otimes> y')" by simp
also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed
lemma (in monoid) Units_m_closed [intro, simp]:
assumes x: "x \<in> Units G" and y: "y \<in> Units G"
shows "x \<otimes> y \<in> Units G"
proof -
from x obtain x' where x: "x \<in> carrier G" "x' \<in> carrier G" and xinv: "x \<otimes> x' = \<one>" "x' \<otimes> x = \<one>"
unfolding Units_def by fast
from y obtain y' where y: "y \<in> carrier G" "y' \<in> carrier G" and yinv: "y \<otimes> y' = \<one>" "y' \<otimes> y = \<one>"
unfolding Units_def by fast
from x y xinv yinv have "y' \<otimes> (x' \<otimes> x) \<otimes> y = \<one>" by simp
moreover from x y xinv yinv have "x \<otimes> (y \<otimes> y') \<otimes> x' = \<one>" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def
\<comment> "Must avoid premature use of \<open>hyp_subst_tac\<close>."
apply (rule_tac CollectI)
apply (rule)
apply (fast)
apply (rule bexI [where x = "y' \<otimes> x'"])
apply (auto simp: m_assoc)
done
qed
lemma (in monoid) Units_one_closed [intro, simp]:
"\<one> \<in> Units G"
by (unfold Units_def) auto
lemma (in monoid) Units_inv_closed [intro, simp]:
"x \<in> Units G ==> inv x \<in> carrier G"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)
done
lemma (in monoid) Units_l_inv_ex:
"x \<in> Units G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
by (unfold Units_def) auto
lemma (in monoid) Units_r_inv_ex:
"x \<in> Units G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>"
by (unfold Units_def) auto
lemma (in monoid) Units_l_inv [simp]:
"x \<in> Units G ==> inv x \<otimes> x = \<one>"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)
done
lemma (in monoid) Units_r_inv [simp]:
"x \<in> Units G ==> x \<otimes> inv x = \<one>"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)
done
lemma (in monoid) Units_inv_Units [intro, simp]:
"x \<in> Units G ==> inv x \<in> Units G"
proof -
assume x: "x \<in> Units G"
show "inv x \<in> Units G"
by (auto simp add: Units_def
intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed
lemma (in monoid) Units_l_cancel [simp]:
"[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y = x \<otimes> z) = (y = z)"
proof
assume eq: "x \<otimes> y = x \<otimes> z"
and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z"
by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by simp
next
assume eq: "y = z"
and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
then show "x \<otimes> y = x \<otimes> z" by simp
qed
lemma (in monoid) Units_inv_inv [simp]:
"x \<in> Units G ==> inv (inv x) = x"
proof -
assume x: "x \<in> Units G"
then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed
lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
fix x y
assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
with G show "x = y" by simp
qed
lemma (in monoid) Units_inv_comm:
assumes inv: "x \<otimes> y = \<one>"
and G: "x \<in> Units G" "y \<in> Units G"
shows "y \<otimes> x = \<one>"
proof -
from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed
lemma (in monoid) carrier_not_empty: "carrier G \<noteq> {}"
by auto
text \<open>Power\<close>
lemma (in monoid) nat_pow_closed [intro, simp]:
"x \<in> carrier G ==> x (^) (n::nat) \<in> carrier G"
by (induct n) (simp_all add: nat_pow_def)
lemma (in monoid) nat_pow_0 [simp]:
"x (^) (0::nat) = \<one>"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_Suc [simp]:
"x (^) (Suc n) = x (^) n \<otimes> x"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_one [simp]:
"\<one> (^) (n::nat) = \<one>"
by (induct n) simp_all
lemma (in monoid) nat_pow_mult:
"x \<in> carrier G ==> x (^) (n::nat) \<otimes> x (^) m = x (^) (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])
lemma (in monoid) nat_pow_pow:
"x \<in> carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
by (induct m) (simp, simp add: nat_pow_mult add.commute)
(* Jacobson defines submonoid here. *)
(* Jacobson defines the order of a monoid here. *)
subsection \<open>Groups\<close>
text \<open>
A group is a monoid all of whose elements are invertible.
\<close>
locale group = monoid +
assumes Units: "carrier G <= Units G"
lemma (in group) is_group: "group G" by (rule group_axioms)
theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
and one_closed [simp]: "\<one> \<in> carrier G"
and m_assoc:
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and l_one [simp]: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
shows "group G"
proof -
have l_cancel [simp]:
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y = x \<otimes> z) = (y = z)"
proof
fix x y z
assume eq: "x \<otimes> y = x \<otimes> z"
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
and l_inv: "x_inv \<otimes> x = \<one>" by fast
from G eq xG have "(x_inv \<otimes> x) \<otimes> y = (x_inv \<otimes> x) \<otimes> z"
by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)
next
fix x y z
assume eq: "y = z"
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
then show "x \<otimes> y = x \<otimes> z" by simp
qed
have r_one:
"!!x. x \<in> carrier G ==> x \<otimes> \<one> = x"
proof -
fix x
assume x: "x \<in> carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
and l_inv: "x_inv \<otimes> x = \<one>" by fast
from x xG have "x_inv \<otimes> (x \<otimes> \<one>) = x_inv \<otimes> x"
by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x \<otimes> \<one> = x" by simp
qed
have inv_ex:
"!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one> & x \<otimes> y = \<one>"
proof -
fix x
assume x: "x \<in> carrier G"
with l_inv_ex obtain y where y: "y \<in> carrier G"
and l_inv: "y \<otimes> x = \<one>" by fast
from x y have "y \<otimes> (x \<otimes> y) = y \<otimes> \<one>"
by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x \<otimes> y = \<one>"
by simp
from x y show "\<exists>y \<in> carrier G. y \<otimes> x = \<one> & x \<otimes> y = \<one>"
by (fast intro: l_inv r_inv)
qed
then have carrier_subset_Units: "carrier G <= Units G"
by (unfold Units_def) fast
show ?thesis
by standard (auto simp: r_one m_assoc carrier_subset_Units)
qed
lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)
lemma (in group) Units_eq [simp]:
"Units G = carrier G"
proof
show "Units G <= carrier G" by fast
next
show "carrier G <= Units G" by (rule Units)
qed
lemma (in group) inv_closed [intro, simp]:
"x \<in> carrier G ==> inv x \<in> carrier G"
using Units_inv_closed by simp
lemma (in group) l_inv_ex [simp]:
"x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
using Units_l_inv_ex by simp
lemma (in group) r_inv_ex [simp]:
"x \<in> carrier G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>"
using Units_r_inv_ex by simp
lemma (in group) l_inv [simp]:
"x \<in> carrier G ==> inv x \<otimes> x = \<one>"
using Units_l_inv by simp
subsection \<open>Cancellation Laws and Basic Properties\<close>
lemma (in group) l_cancel [simp]:
"[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y = x \<otimes> z) = (y = z)"
using Units_l_inv by simp
lemma (in group) r_inv [simp]:
"x \<in> carrier G ==> x \<otimes> inv x = \<one>"
proof -
assume x: "x \<in> carrier G"
then have "inv x \<otimes> (x \<otimes> inv x) = inv x \<otimes> \<one>"
by (simp add: m_assoc [symmetric])
with x show ?thesis by (simp del: r_one)
qed
lemma (in group) r_cancel [simp]:
"[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(y \<otimes> x = z \<otimes> x) = (y = z)"
proof
assume eq: "y \<otimes> x = z \<otimes> x"
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
then have "y \<otimes> (x \<otimes> inv x) = z \<otimes> (x \<otimes> inv x)"
by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)
with G show "y = z" by simp
next
assume eq: "y = z"
and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
then show "y \<otimes> x = z \<otimes> x" by simp
qed
lemma (in group) inv_one [simp]:
"inv \<one> = \<one>"
proof -
have "inv \<one> = \<one> \<otimes> (inv \<one>)" by (simp del: r_inv Units_r_inv)
moreover have "... = \<one>" by simp
finally show ?thesis .
qed
lemma (in group) inv_inv [simp]:
"x \<in> carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp
lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp
lemma (in group) inv_mult_group:
"[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x"
proof -
assume G: "x \<in> carrier G" "y \<in> carrier G"
then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)"
by (simp add: m_assoc) (simp add: m_assoc [symmetric])
with G show ?thesis by (simp del: l_inv Units_l_inv)
qed
lemma (in group) inv_comm:
"[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>"
by (rule Units_inv_comm) auto
lemma (in group) inv_equality:
"[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y"
apply (simp add: m_inv_def)
apply (rule the_equality)
apply (simp add: inv_comm [of y x])
apply (rule r_cancel [THEN iffD1], auto)
done
(* Contributed by Joachim Breitner *)
lemma (in group) inv_solve_left:
"\<lbrakk> a \<in> carrier G; b \<in> carrier G; c \<in> carrier G \<rbrakk> \<Longrightarrow> a = inv b \<otimes> c \<longleftrightarrow> c = b \<otimes> a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right:
"\<lbrakk> a \<in> carrier G; b \<in> carrier G; c \<in> carrier G \<rbrakk> \<Longrightarrow> a = b \<otimes> inv c \<longleftrightarrow> b = a \<otimes> c"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
text \<open>Power\<close>
lemma (in group) int_pow_def2:
"a (^) (z::int) = (if z < 0 then inv (a (^) (nat (-z))) else a (^) (nat z))"
by (simp add: int_pow_def nat_pow_def Let_def)
lemma (in group) int_pow_0 [simp]:
"x (^) (0::int) = \<one>"
by (simp add: int_pow_def2)
lemma (in group) int_pow_one [simp]:
"\<one> (^) (z::int) = \<one>"
by (simp add: int_pow_def2)
(* The following are contributed by Joachim Breitner *)
lemma (in group) int_pow_closed [intro, simp]:
"x \<in> carrier G ==> x (^) (i::int) \<in> carrier G"
by (simp add: int_pow_def2)
lemma (in group) int_pow_1 [simp]:
"x \<in> carrier G \<Longrightarrow> x (^) (1::int) = x"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg:
"x \<in> carrier G \<Longrightarrow> x (^) (-i::int) = inv (x (^) i)"
by (simp add: int_pow_def2)
lemma (in group) int_pow_mult:
"x \<in> carrier G \<Longrightarrow> x (^) (i + j::int) = x (^) i \<otimes> x (^) j"
proof -
have [simp]: "-i - j = -j - i" by simp
assume "x : carrier G" then
show ?thesis
by (auto simp add: int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult )
qed
lemma (in group) int_pow_diff:
"x \<in> carrier G \<Longrightarrow> x (^) (n - m :: int) = x (^) n \<otimes> inv (x (^) m)"
by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)
lemma (in group) inj_on_multc: "c \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. x \<otimes> c) (carrier G)"
by(simp add: inj_on_def)
lemma (in group) inj_on_cmult: "c \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. c \<otimes> x) (carrier G)"
by(simp add: inj_on_def)
subsection \<open>Subgroups\<close>
locale subgroup =
fixes H and G (structure)
assumes subset: "H \<subseteq> carrier G"
and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
and one_closed [simp]: "\<one> \<in> H"
and m_inv_closed [intro,simp]: "x \<in> H \<Longrightarrow> inv x \<in> H"
lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)
declare (in subgroup) group.intro [intro]
lemma (in subgroup) mem_carrier [simp]:
"x \<in> H \<Longrightarrow> x \<in> carrier G"
using subset by blast
lemma subgroup_imp_subset:
"subgroup H G \<Longrightarrow> H \<subseteq> carrier G"
by (rule subgroup.subset)
lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G\<lparr>carrier := H\<rparr>)"
proof -
interpret group G by fact
show ?thesis
apply (rule monoid.group_l_invI)
apply (unfold_locales) [1]
apply (auto intro: m_assoc l_inv mem_carrier)
done
qed
text \<open>
Since @{term H} is nonempty, it contains some element @{term x}. Since
it is closed under inverse, it contains \<open>inv x\<close>. Since
it is closed under product, it contains \<open>x \<otimes> inv x = \<one>\<close>.
\<close>
lemma (in group) one_in_subset:
"[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |]
==> \<one> \<in> H"
by force
text \<open>A characterization of subgroups: closed, non-empty subset.\<close>
lemma (in group) subgroupI:
assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}"
and inv: "!!a. a \<in> H \<Longrightarrow> inv a \<in> H"
and mult: "!!a b. \<lbrakk>a \<in> H; b \<in> H\<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H"
shows "subgroup H G"
proof (simp add: subgroup_def assms)
show "\<one> \<in> H" by (rule one_in_subset) (auto simp only: assms)
qed
declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
lemma subgroup_nonempty:
"~ subgroup {} G"
by (blast dest: subgroup.one_closed)
lemma (in subgroup) finite_imp_card_positive:
"finite (carrier G) ==> 0 < card H"
proof (rule classical)
assume "finite (carrier G)" and a: "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with is_subgroup a have "subgroup {} G" by simp
with subgroup_nonempty show ?thesis by contradiction
qed
(*
lemma (in monoid) Units_subgroup:
"subgroup (Units G) G"
*)
subsection \<open>Direct Products\<close>
definition
DirProd :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<times> 'b) monoid" (infixr "\<times>\<times>" 80) where
"G \<times>\<times> H =
\<lparr>carrier = carrier G \<times> carrier H,
mult = (\<lambda>(g, h) (g', h'). (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')),
one = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)\<rparr>"
lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G \<times>\<times> H)"
proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)
qed
text\<open>Does not use the previous result because it's easier just to use auto.\<close>
lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G \<times>\<times> H)"
proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)
qed
lemma carrier_DirProd [simp]:
"carrier (G \<times>\<times> H) = carrier G \<times> carrier H"
by (simp add: DirProd_def)
lemma one_DirProd [simp]:
"\<one>\<^bsub>G \<times>\<times> H\<^esub> = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)"
by (simp add: DirProd_def)
lemma mult_DirProd [simp]:
"(g, h) \<otimes>\<^bsub>(G \<times>\<times> H)\<^esub> (g', h') = (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')"
by (simp add: DirProd_def)
lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g \<in> carrier G"
and h: "h \<in> carrier H"
shows "m_inv (G \<times>\<times> H) (g, h) = (inv\<^bsub>G\<^esub> g, inv\<^bsub>H\<^esub> h)"
proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G \<times>\<times> H"
by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed
subsection \<open>Homomorphisms and Isomorphisms\<close>
definition
hom :: "_ => _ => ('a => 'b) set" where
"hom G H =
{h. h \<in> carrier G \<rightarrow> carrier H &
(\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y)}"
lemma (in group) hom_compose:
"[|h \<in> hom G H; i \<in> hom H I|] ==> compose (carrier G) i h \<in> hom G I"
by (fastforce simp add: hom_def compose_def)
definition
iso :: "_ => _ => ('a => 'b) set" (infixr "\<cong>" 60)
where "G \<cong> H = {h. h \<in> hom G H & bij_betw h (carrier G) (carrier H)}"
lemma iso_refl: "(%x. x) \<in> G \<cong> G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma (in group) iso_sym:
"h \<in> G \<cong> H \<Longrightarrow> inv_into (carrier G) h \<in> H \<cong> G"
apply (simp add: iso_def bij_betw_inv_into)
apply (subgoal_tac "inv_into (carrier G) h \<in> carrier H \<rightarrow> carrier G")
prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into])
apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def)
done
lemma (in group) iso_trans:
"[|h \<in> G \<cong> H; i \<in> H \<cong> I|] ==> (compose (carrier G) i h) \<in> G \<cong> I"
by (auto simp add: iso_def hom_compose bij_betw_compose)
lemma DirProd_commute_iso:
shows "(\<lambda>(x,y). (y,x)) \<in> (G \<times>\<times> H) \<cong> (H \<times>\<times> G)"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
lemma DirProd_assoc_iso:
shows "(\<lambda>(x,y,z). (x,(y,z))) \<in> (G \<times>\<times> H \<times>\<times> I) \<cong> (G \<times>\<times> (H \<times>\<times> I))"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
text\<open>Basis for homomorphism proofs: we assume two groups @{term G} and
@{term H}, with a homomorphism @{term h} between them\<close>
locale group_hom = G?: group G + H?: group H for G (structure) and H (structure) +
fixes h
assumes homh: "h \<in> hom G H"
lemma (in group_hom) hom_mult [simp]:
"[| x \<in> carrier G; y \<in> carrier G |] ==> h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y"
proof -
assume "x \<in> carrier G" "y \<in> carrier G"
with homh [unfolded hom_def] show ?thesis by simp
qed
lemma (in group_hom) hom_closed [simp]:
"x \<in> carrier G ==> h x \<in> carrier H"
proof -
assume "x \<in> carrier G"
with homh [unfolded hom_def] show ?thesis by auto
qed
lemma (in group_hom) one_closed [simp]:
"h \<one> \<in> carrier H"
by simp
lemma (in group_hom) hom_one [simp]:
"h \<one> = \<one>\<^bsub>H\<^esub>"
proof -
have "h \<one> \<otimes>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = h \<one> \<otimes>\<^bsub>H\<^esub> h \<one>"
by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis by (simp del: r_one)
qed
lemma (in group_hom) inv_closed [simp]:
"x \<in> carrier G ==> h (inv x) \<in> carrier H"
by simp
lemma (in group_hom) hom_inv [simp]:
"x \<in> carrier G ==> h (inv x) = inv\<^bsub>H\<^esub> (h x)"
proof -
assume x: "x \<in> carrier G"
then have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = \<one>\<^bsub>H\<^esub>"
by (simp add: hom_mult [symmetric] del: hom_mult)
also from x have "... = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)"
by (simp add: hom_mult [symmetric] del: hom_mult)
finally have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)" .
with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed
(* Contributed by Joachim Breitner *)
lemma (in group) int_pow_is_hom:
"x \<in> carrier G \<Longrightarrow> (op(^) x) \<in> hom \<lparr> carrier = UNIV, mult = op +, one = 0::int \<rparr> G "
unfolding hom_def by (simp add: int_pow_mult)
subsection \<open>Commutative Structures\<close>
text \<open>
Naming convention: multiplicative structures that are commutative
are called \emph{commutative}, additive structures are called
\emph{Abelian}.
\<close>
locale comm_monoid = monoid +
assumes m_comm: "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y = y \<otimes> x"
lemma (in comm_monoid) m_lcomm:
"\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> \<Longrightarrow>
x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
proof -
assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc)
also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm)
also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc)
finally show ?thesis .
qed
lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
lemma comm_monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
and one_closed: "\<one> \<in> carrier G"
and m_assoc:
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
and m_comm:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
shows "comm_monoid G"
using l_one
by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
intro: assms simp: m_closed one_closed m_comm)
lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)
(*lemma (in comm_monoid) r_one [simp]:
"x \<in> carrier G ==> x \<otimes> \<one> = x"
proof -
assume G: "x \<in> carrier G"
then have "x \<otimes> \<one> = \<one> \<otimes> x" by (simp add: m_comm)
also from G have "... = x" by simp
finally show ?thesis .
qed*)
lemma (in comm_monoid) nat_pow_distr:
"[| x \<in> carrier G; y \<in> carrier G |] ==>
(x \<otimes> y) (^) (n::nat) = x (^) n \<otimes> y (^) n"
by (induct n) (simp, simp add: m_ac)
locale comm_group = comm_monoid + group
lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==>
x \<otimes> y = y \<otimes> x"
shows "comm_group G"
by standard (simp_all add: m_comm)
lemma comm_groupI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
and one_closed: "\<one> \<in> carrier G"
and m_assoc:
"!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
and m_comm:
"!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
shows "comm_group G"
by (fast intro: group.group_comm_groupI groupI assms)
lemma (in comm_group) inv_mult:
"[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y"
by (simp add: m_ac inv_mult_group)
subsection \<open>The Lattice of Subgroups of a Group\<close>
text_raw \<open>\label{sec:subgroup-lattice}\<close>
theorem (in group) subgroups_partial_order:
"partial_order \<lparr>carrier = {H. subgroup H G}, eq = op =, le = op \<subseteq>\<rparr>"
by standard simp_all
lemma (in group) subgroup_self:
"subgroup (carrier G) G"
by (rule subgroupI) auto
lemma (in group) subgroup_imp_group:
"subgroup H G ==> group (G\<lparr>carrier := H\<rparr>)"
by (erule subgroup.subgroup_is_group) (rule group_axioms)
lemma (in group) is_monoid [intro, simp]:
"monoid G"
by (auto intro: monoid.intro m_assoc)
lemma (in group) subgroup_inv_equality:
"[| subgroup H G; x \<in> H |] ==> m_inv (G \<lparr>carrier := H\<rparr>) x = inv x"
apply (rule_tac inv_equality [THEN sym])
apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
apply (rule subsetD [OF subgroup.subset], assumption+)
apply (rule subsetD [OF subgroup.subset], assumption)
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified], assumption+)
done
theorem (in group) subgroups_Inter:
assumes subgr: "(!!H. H \<in> A ==> subgroup H G)"
and not_empty: "A ~= {}"
shows "subgroup (\<Inter>A) G"
proof (rule subgroupI)
from subgr [THEN subgroup.subset] and not_empty
show "\<Inter>A \<subseteq> carrier G" by blast
next
from subgr [THEN subgroup.one_closed]
show "\<Inter>A ~= {}" by blast
next
fix x assume "x \<in> \<Inter>A"
with subgr [THEN subgroup.m_inv_closed]
show "inv x \<in> \<Inter>A" by blast
next
fix x y assume "x \<in> \<Inter>A" "y \<in> \<Inter>A"
with subgr [THEN subgroup.m_closed]
show "x \<otimes> y \<in> \<Inter>A" by blast
qed
theorem (in group) subgroups_complete_lattice:
"complete_lattice \<lparr>carrier = {H. subgroup H G}, eq = op =, le = op \<subseteq>\<rparr>"
(is "complete_lattice ?L")
proof (rule partial_order.complete_lattice_criterion1)
show "partial_order ?L" by (rule subgroups_partial_order)
next
have "greatest ?L (carrier G) (carrier ?L)"
by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
then show "\<exists>G. greatest ?L G (carrier ?L)" ..
next
fix A
assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
then have Int_subgroup: "subgroup (\<Inter>A) G"
by (fastforce intro: subgroups_Inter)
have "greatest ?L (\<Inter>A) (Lower ?L A)" (is "greatest _ ?Int _")
proof (rule greatest_LowerI)
fix H
assume H: "H \<in> A"
with L have subgroupH: "subgroup H G" by auto
from subgroupH have groupH: "group (G \<lparr>carrier := H\<rparr>)" (is "group ?H")
by (rule subgroup_imp_group)
from groupH have monoidH: "monoid ?H"
by (rule group.is_monoid)
from H have Int_subset: "?Int \<subseteq> H" by fastforce
then show "le ?L ?Int H" by simp
next
fix H
assume H: "H \<in> Lower ?L A"
with L Int_subgroup show "le ?L H ?Int"
by (fastforce simp: Lower_def intro: Inter_greatest)
next
show "A \<subseteq> carrier ?L" by (rule L)
next
show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
qed
then show "\<exists>I. greatest ?L I (Lower ?L A)" ..
qed
end