(* Title: ZF/AC/AC18_AC19.thy
Author: Krzysztof Grabczewski
The proof of AC1 ==> AC18 ==> AC19 ==> AC1
*)
theory AC18_AC19
imports AC_Equiv
begin
definition
uu :: "i => i" where
"uu(a) == {c \<union> {0}. c \<in> a}"
(* ********************************************************************** *)
(* AC1 ==> AC18 *)
(* ********************************************************************** *)
lemma PROD_subsets:
"[| f \<in> (\<Prod>b \<in> {P(a). a \<in> A}. b); \<forall>a \<in> A. P(a)<=Q(a) |]
==> (\<lambda>a \<in> A. f`P(a)) \<in> (\<Prod>a \<in> A. Q(a))"
by (rule lam_type, drule apply_type, auto)
lemma lemma_AC18:
"[| \<forall>A. 0 \<notin> A \<longrightarrow> (\<exists>f. f \<in> (\<Prod>X \<in> A. X)); A \<noteq> 0 |]
==> (\<Inter>a \<in> A. \<Union>b \<in> B(a). X(a, b)) \<subseteq>
(\<Union>f \<in> \<Prod>a \<in> A. B(a). \<Inter>a \<in> A. X(a, f`a))"
apply (rule subsetI)
apply (erule_tac x = "{{b \<in> B (a) . x \<in> X (a,b) }. a \<in> A}" in allE)
apply (erule impE, fast)
apply (erule exE)
apply (rule UN_I)
apply (fast elim!: PROD_subsets)
apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI])
done
lemma AC1_AC18: "AC1 ==> PROP AC18"
apply (unfold AC1_def)
apply (rule AC18.intro)
apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT_I UN_I)
done
(* ********************************************************************** *)
(* AC18 ==> AC19 *)
(* ********************************************************************** *)
theorem (in AC18) AC19
apply (unfold AC19_def)
apply (intro allI impI)
apply (rule AC18 [of _ "%x. x", THEN mp], blast)
done
(* ********************************************************************** *)
(* AC19 ==> AC1 *)
(* ********************************************************************** *)
lemma RepRep_conj:
"[| A \<noteq> 0; 0 \<notin> A |] ==> {uu(a). a \<in> A} \<noteq> 0 & 0 \<notin> {uu(a). a \<in> A}"
apply (unfold uu_def, auto)
apply (blast dest!: sym [THEN RepFun_eq_0_iff [THEN iffD1]])
done
lemma lemma1_1: "[|c \<in> a; x = c \<union> {0}; x \<notin> a |] ==> x - {0} \<in> a"
apply clarify
apply (rule subst_elem, assumption)
apply (fast elim: notE subst_elem)
done
lemma lemma1_2:
"[| f`(uu(a)) \<notin> a; f \<in> (\<Prod>B \<in> {uu(a). a \<in> A}. B); a \<in> A |]
==> f`(uu(a))-{0} \<in> a"
apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type)
done
lemma lemma1: "\<exists>f. f \<in> (\<Prod>B \<in> {uu(a). a \<in> A}. B) ==> \<exists>f. f \<in> (\<Prod>B \<in> A. B)"
apply (erule exE)
apply (rule_tac x = "\<lambda>a\<in>A. if (f` (uu(a)) \<in> a, f` (uu(a)), f` (uu(a))-{0})"
in exI)
apply (rule lam_type)
apply (simp add: lemma1_2)
done
lemma lemma2_1: "a\<noteq>0 ==> 0 \<in> (\<Union>b \<in> uu(a). b)"
by (unfold uu_def, auto)
lemma lemma2: "[| A\<noteq>0; 0\<notin>A |] ==> (\<Inter>x \<in> {uu(a). a \<in> A}. \<Union>b \<in> x. b) \<noteq> 0"
apply (erule not_emptyE)
apply (rule_tac a = 0 in not_emptyI)
apply (fast intro!: lemma2_1)
done
lemma AC19_AC1: "AC19 ==> AC1"
apply (unfold AC19_def AC1_def, clarify)
apply (case_tac "A=0", force)
apply (erule_tac x = "{uu (a) . a \<in> A}" in allE)
apply (erule impE)
apply (erule RepRep_conj, assumption)
apply (rule lemma1)
apply (drule lemma2, assumption, auto)
done
end