(* Author: Florian Haftmann, TU Muenchen *)
header {* A dedicated set type which is executable on its finite part *}
theory Cset
imports More_Set More_List
begin
subsection {* Lifting *}
typedef (open) 'a set = "UNIV :: 'a set set"
morphisms member Set by rule+
hide_type (open) set
lemma member_Set [simp]:
"member (Set A) = A"
by (rule Set_inverse) rule
lemma Set_member [simp]:
"Set (member A) = A"
by (fact member_inverse)
lemma Set_inject [simp]:
"Set A = Set B \<longleftrightarrow> A = B"
by (simp add: Set_inject)
lemma set_eq_iff:
"A = B \<longleftrightarrow> member A = member B"
by (simp add: member_inject)
hide_fact (open) set_eq_iff
lemma set_eqI:
"member A = member B \<Longrightarrow> A = B"
by (simp add: Cset.set_eq_iff)
hide_fact (open) set_eqI
declare mem_def [simp]
definition set :: "'a list \<Rightarrow> 'a Cset.set" where
"set xs = Set (List.set xs)"
hide_const (open) set
lemma member_set [simp]:
"member (Cset.set xs) = set xs"
by (simp add: set_def)
hide_fact (open) member_set
definition coset :: "'a list \<Rightarrow> 'a Cset.set" where
"coset xs = Set (- set xs)"
hide_const (open) coset
lemma member_coset [simp]:
"member (Cset.coset xs) = - set xs"
by (simp add: coset_def)
hide_fact (open) member_coset
code_datatype Cset.set Cset.coset
lemma member_code [code]:
"member (Cset.set xs) = List.member xs"
"member (Cset.coset xs) = Not \<circ> List.member xs"
by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
lemma member_image_UNIV [simp]:
"member ` UNIV = UNIV"
proof -
have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a Cset.set. A = member B"
proof
fix A :: "'a set"
show "A = member (Set A)" by simp
qed
then show ?thesis by (simp add: image_def)
qed
definition (in term_syntax)
setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
\<Rightarrow> 'a Cset.set \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
[code_unfold]: "setify xs = Code_Evaluation.valtermify Cset.set {\<cdot>} xs"
notation fcomp (infixl "\<circ>>" 60)
notation scomp (infixl "\<circ>\<rightarrow>" 60)
instantiation Cset.set :: (random) random
begin
definition
"Quickcheck.random i = Quickcheck.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (setify xs))"
instance ..
end
no_notation fcomp (infixl "\<circ>>" 60)
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
subsection {* Lattice instantiation *}
instantiation Cset.set :: (type) boolean_algebra
begin
definition less_eq_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
[simp]: "A \<le> B \<longleftrightarrow> member A \<subseteq> member B"
definition less_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
[simp]: "A < B \<longleftrightarrow> member A \<subset> member B"
definition inf_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "inf A B = Set (member A \<inter> member B)"
definition sup_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "sup A B = Set (member A \<union> member B)"
definition bot_set :: "'a Cset.set" where
[simp]: "bot = Set {}"
definition top_set :: "'a Cset.set" where
[simp]: "top = Set UNIV"
definition uminus_set :: "'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "- A = Set (- (member A))"
definition minus_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "A - B = Set (member A - member B)"
instance proof
qed (auto intro: Cset.set_eqI)
end
instantiation Cset.set :: (type) complete_lattice
begin
definition Inf_set :: "'a Cset.set set \<Rightarrow> 'a Cset.set" where
[simp]: "Inf_set As = Set (Inf (image member As))"
definition Sup_set :: "'a Cset.set set \<Rightarrow> 'a Cset.set" where
[simp]: "Sup_set As = Set (Sup (image member As))"
instance proof
qed (auto simp add: le_fun_def le_bool_def)
end
subsection {* Basic operations *}
definition is_empty :: "'a Cset.set \<Rightarrow> bool" where
[simp]: "is_empty A \<longleftrightarrow> More_Set.is_empty (member A)"
lemma is_empty_set [code]:
"is_empty (Cset.set xs) \<longleftrightarrow> List.null xs"
by (simp add: is_empty_set)
hide_fact (open) is_empty_set
lemma empty_set [code]:
"bot = Cset.set []"
by (simp add: set_def)
hide_fact (open) empty_set
lemma UNIV_set [code]:
"top = Cset.coset []"
by (simp add: coset_def)
hide_fact (open) UNIV_set
definition insert :: "'a \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "insert x A = Set (Set.insert x (member A))"
lemma insert_set [code]:
"insert x (Cset.set xs) = Cset.set (List.insert x xs)"
"insert x (Cset.coset xs) = Cset.coset (removeAll x xs)"
by (simp_all add: set_def coset_def)
definition remove :: "'a \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "remove x A = Set (More_Set.remove x (member A))"
lemma remove_set [code]:
"remove x (Cset.set xs) = Cset.set (removeAll x xs)"
"remove x (Cset.coset xs) = Cset.coset (List.insert x xs)"
by (simp_all add: set_def coset_def remove_set_compl)
(simp add: More_Set.remove_def)
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a Cset.set \<Rightarrow> 'b Cset.set" where
[simp]: "map f A = Set (image f (member A))"
lemma map_set [code]:
"map f (Cset.set xs) = Cset.set (remdups (List.map f xs))"
by (simp add: set_def)
enriched_type map: map
by (simp_all add: fun_eq_iff image_compose)
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
[simp]: "filter P A = Set (More_Set.project P (member A))"
lemma filter_set [code]:
"filter P (Cset.set xs) = Cset.set (List.filter P xs)"
by (simp add: set_def project_set)
definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
[simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
lemma forall_set [code]:
"forall P (Cset.set xs) \<longleftrightarrow> list_all P xs"
by (simp add: set_def list_all_iff)
definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
[simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
lemma exists_set [code]:
"exists P (Cset.set xs) \<longleftrightarrow> list_ex P xs"
by (simp add: set_def list_ex_iff)
definition card :: "'a Cset.set \<Rightarrow> nat" where
[simp]: "card A = Finite_Set.card (member A)"
lemma card_set [code]:
"card (Cset.set xs) = length (remdups xs)"
proof -
have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
by (rule distinct_card) simp
then show ?thesis by (simp add: set_def)
qed
lemma compl_set [simp, code]:
"- Cset.set xs = Cset.coset xs"
by (simp add: set_def coset_def)
lemma compl_coset [simp, code]:
"- Cset.coset xs = Cset.set xs"
by (simp add: set_def coset_def)
subsection {* Derived operations *}
lemma subset_eq_forall [code]:
"A \<le> B \<longleftrightarrow> forall (member B) A"
by (simp add: subset_eq)
lemma subset_subset_eq [code]:
"A < B \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> (A :: 'a Cset.set)"
by (fact less_le_not_le)
instantiation Cset.set :: (type) equal
begin
definition [code]:
"HOL.equal A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a Cset.set)"
instance proof
qed (simp add: equal_set_def set_eq [symmetric] Cset.set_eq_iff)
end
lemma [code nbe]:
"HOL.equal (A :: 'a Cset.set) A \<longleftrightarrow> True"
by (fact equal_refl)
subsection {* Functorial operations *}
lemma inter_project [code]:
"inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)"
"inf A (Cset.coset xs) = foldr remove xs A"
proof -
show "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)"
by (simp add: inter project_def set_def)
have *: "\<And>x::'a. remove = (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member)"
by (simp add: fun_eq_iff)
have "member \<circ> fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs =
fold More_Set.remove xs \<circ> member"
by (rule fold_commute) (simp add: fun_eq_iff)
then have "fold More_Set.remove xs (member A) =
member (fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs A)"
by (simp add: fun_eq_iff)
then have "inf A (Cset.coset xs) = fold remove xs A"
by (simp add: Diff_eq [symmetric] minus_set *)
moreover have "\<And>x y :: 'a. Cset.remove y \<circ> Cset.remove x = Cset.remove x \<circ> Cset.remove y"
by (auto simp add: More_Set.remove_def * intro: ext)
ultimately show "inf A (Cset.coset xs) = foldr remove xs A"
by (simp add: foldr_fold)
qed
lemma subtract_remove [code]:
"A - Cset.set xs = foldr remove xs A"
"A - Cset.coset xs = Cset.set (List.filter (member A) xs)"
by (simp_all only: diff_eq compl_set compl_coset inter_project)
lemma union_insert [code]:
"sup (Cset.set xs) A = foldr insert xs A"
"sup (Cset.coset xs) A = Cset.coset (List.filter (Not \<circ> member A) xs)"
proof -
have *: "\<And>x::'a. insert = (\<lambda>x. Set \<circ> Set.insert x \<circ> member)"
by (simp add: fun_eq_iff)
have "member \<circ> fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs =
fold Set.insert xs \<circ> member"
by (rule fold_commute) (simp add: fun_eq_iff)
then have "fold Set.insert xs (member A) =
member (fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs A)"
by (simp add: fun_eq_iff)
then have "sup (Cset.set xs) A = fold insert xs A"
by (simp add: union_set *)
moreover have "\<And>x y :: 'a. Cset.insert y \<circ> Cset.insert x = Cset.insert x \<circ> Cset.insert y"
by (auto simp add: * intro: ext)
ultimately show "sup (Cset.set xs) A = foldr insert xs A"
by (simp add: foldr_fold)
show "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \<circ> member A) xs)"
by (auto simp add: coset_def)
qed
context complete_lattice
begin
definition Infimum :: "'a Cset.set \<Rightarrow> 'a" where
[simp]: "Infimum A = Inf (member A)"
lemma Infimum_inf [code]:
"Infimum (Cset.set As) = foldr inf As top"
"Infimum (Cset.coset []) = bot"
by (simp_all add: Inf_set_foldr Inf_UNIV)
definition Supremum :: "'a Cset.set \<Rightarrow> 'a" where
[simp]: "Supremum A = Sup (member A)"
lemma Supremum_sup [code]:
"Supremum (Cset.set As) = foldr sup As bot"
"Supremum (Cset.coset []) = top"
by (simp_all add: Sup_set_foldr Sup_UNIV)
end
subsection {* Simplified simprules *}
lemma is_empty_simp [simp]:
"is_empty A \<longleftrightarrow> member A = {}"
by (simp add: More_Set.is_empty_def)
declare is_empty_def [simp del]
lemma remove_simp [simp]:
"remove x A = Set (member A - {x})"
by (simp add: More_Set.remove_def)
declare remove_def [simp del]
lemma filter_simp [simp]:
"filter P A = Set {x \<in> member A. P x}"
by (simp add: More_Set.project_def)
declare filter_def [simp del]
declare mem_def [simp del]
hide_const (open) setify is_empty insert remove map filter forall exists card
Inter Union
end