(* Title: HOL/Tools/SMT/smt_real.ML
Author: Sascha Boehme, TU Muenchen
SMT setup for reals.
*)
signature SMT_REAL =
sig
val setup: theory -> theory
end
structure SMT_Real: SMT_REAL =
struct
(* SMT-LIB logic *)
fun smtlib_logic ts =
if exists (Term.exists_type (Term.exists_subtype (equal @{typ real}))) ts
then SOME "AUFLIRA"
else NONE
(* SMT-LIB builtins *)
local
fun smtlib_builtin_typ @{typ real} = SOME "Real"
| smtlib_builtin_typ _ = NONE
fun smtlib_builtin_num @{typ real} i = SOME (string_of_int i ^ ".0")
| smtlib_builtin_num _ _ = NONE
fun smtlib_builtin_func @{const_name uminus} ts = SOME ("~", ts)
| smtlib_builtin_func @{const_name plus} ts = SOME ("+", ts)
| smtlib_builtin_func @{const_name minus} ts = SOME ("-", ts)
| smtlib_builtin_func @{const_name times} ts = SOME ("*", ts)
| smtlib_builtin_func _ _ = NONE
fun smtlib_builtin_pred @{const_name less} = SOME "<"
| smtlib_builtin_pred @{const_name less_eq} = SOME "<="
| smtlib_builtin_pred _ = NONE
fun real_fun T y f x =
(case try Term.domain_type T of
SOME @{typ real} => f x
| _ => y)
in
val smtlib_builtins = {
builtin_typ = smtlib_builtin_typ,
builtin_num = smtlib_builtin_num,
builtin_func = (fn (n, T) => real_fun T NONE (smtlib_builtin_func n)),
builtin_pred = (fn (n, T) => fn ts =>
real_fun T NONE smtlib_builtin_pred n |> Option.map (rpair ts)),
is_builtin_pred = (fn n => fn T =>
real_fun T false (is_some o smtlib_builtin_pred) n) }
end
(* Z3 builtins *)
local
fun z3_builtin_fun @{term "op / :: real => _"} ts = SOME ("/", ts)
| z3_builtin_fun _ _ = NONE
in
val z3_builtins = (fn c => fn ts => z3_builtin_fun (Const c) ts)
end
(* Z3 constructors *)
local
structure I = Z3_Interface
fun z3_mk_builtin_typ (I.Sym ("real", _)) = SOME @{typ real}
| z3_mk_builtin_typ _ = NONE
fun z3_mk_builtin_num _ i T =
if T = @{typ real} then SOME (Numeral.mk_cnumber @{ctyp real} i)
else NONE
val mk_uminus = Thm.capply @{cterm "uminus :: real => _"}
val mk_add = Thm.mk_binop @{cterm "op + :: real => _"}
val mk_sub = Thm.mk_binop @{cterm "op - :: real => _"}
val mk_mul = Thm.mk_binop @{cterm "op * :: real => _"}
val mk_div = Thm.mk_binop @{cterm "op / :: real => _"}
val mk_lt = Thm.mk_binop @{cterm "op < :: real => _"}
val mk_le = Thm.mk_binop @{cterm "op <= :: real => _"}
fun z3_mk_builtin_fun (I.Sym ("-", _)) [ct] = SOME (mk_uminus ct)
| z3_mk_builtin_fun (I.Sym ("+", _)) [ct, cu] = SOME (mk_add ct cu)
| z3_mk_builtin_fun (I.Sym ("-", _)) [ct, cu] = SOME (mk_sub ct cu)
| z3_mk_builtin_fun (I.Sym ("*", _)) [ct, cu] = SOME (mk_mul ct cu)
| z3_mk_builtin_fun (I.Sym ("/", _)) [ct, cu] = SOME (mk_div ct cu)
| z3_mk_builtin_fun (I.Sym ("<", _)) [ct, cu] = SOME (mk_lt ct cu)
| z3_mk_builtin_fun (I.Sym ("<=", _)) [ct, cu] = SOME (mk_le ct cu)
| z3_mk_builtin_fun (I.Sym (">", _)) [ct, cu] = SOME (mk_lt cu ct)
| z3_mk_builtin_fun (I.Sym (">=", _)) [ct, cu] = SOME (mk_le cu ct)
| z3_mk_builtin_fun _ _ = NONE
in
val z3_mk_builtins = {
mk_builtin_typ = z3_mk_builtin_typ,
mk_builtin_num = z3_mk_builtin_num,
mk_builtin_fun = (fn _ => fn sym => fn cts =>
(case try (#T o Thm.rep_cterm o hd) cts of
SOME @{typ real} => z3_mk_builtin_fun sym cts
| _ => NONE)) }
end
(* Z3 proof reconstruction *)
val real_rules = @{lemma
"0 + (x::real) = x"
"x + 0 = x"
"0 * x = 0"
"1 * x = x"
"x + y = y + x"
by auto}
val real_linarith_proc = Simplifier.simproc @{theory} "fast_real_arith" [
"(m::real) < n", "(m::real) <= n", "(m::real) = n"] (K Lin_Arith.simproc)
(* setup *)
val setup =
Context.theory_map (
SMTLIB_Interface.add_logic smtlib_logic #>
SMTLIB_Interface.add_builtins smtlib_builtins #>
Z3_Interface.add_builtin_funs z3_builtins #>
Z3_Interface.add_mk_builtins z3_mk_builtins #>
fold Z3_Proof_Reconstruction.add_z3_rule real_rules #>
Z3_Proof_Tools.add_simproc real_linarith_proc)
end