(* Title: Pure/context.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Generic theory contexts with unique identity, arbitrarily typed data,
development graph and history support. Implicit theory contexts in ML.
Generic proof contexts with arbitrarily typed data.
*)
signature BASIC_CONTEXT =
sig
type theory
type theory_ref
exception THEORY of string * theory list
val context: theory -> unit
val the_context: unit -> theory
end;
signature CONTEXT =
sig
include BASIC_CONTEXT
(*theory context*)
val theory_name: theory -> string
val parents_of: theory -> theory list
val ancestors_of: theory -> theory list
val is_stale: theory -> bool
val ProtoPureN: string
val PureN: string
val CPureN: string
val draftN: string
val exists_name: string -> theory -> bool
val names_of: theory -> string list
val pretty_thy: theory -> Pretty.T
val string_of_thy: theory -> string
val pprint_thy: theory -> pprint_args -> unit
val pretty_abbrev_thy: theory -> Pretty.T
val str_of_thy: theory -> string
val check_thy: theory -> theory
val eq_thy: theory * theory -> bool
val subthy: theory * theory -> bool
val joinable: theory * theory -> bool
val merge: theory * theory -> theory (*exception TERM*)
val merge_refs: theory_ref * theory_ref -> theory_ref (*exception TERM*)
val self_ref: theory -> theory_ref
val deref: theory_ref -> theory
val copy_thy: theory -> theory
val checkpoint_thy: theory -> theory
val finish_thy: theory -> theory
val theory_data_of: theory -> string list
val pre_pure_thy: theory
val begin_thy: (theory -> Pretty.pp) -> string -> theory list -> theory
(*ML theory context*)
val get_context: unit -> theory option
val set_context: theory option -> unit
val reset_context: unit -> unit
val setmp: theory option -> ('a -> 'b) -> 'a -> 'b
val pass: theory option -> ('a -> 'b) -> 'a -> 'b * theory option
val pass_theory: theory -> ('a -> 'b) -> 'a -> 'b * theory
val save: ('a -> 'b) -> 'a -> 'b
val >> : (theory -> theory) -> unit
val ml_output: (string -> unit) * (string -> unit)
val use_mltext: string -> bool -> theory option -> unit
val use_mltext_theory: string -> bool -> theory -> theory
val use_let: string -> string -> string -> theory -> theory
val add_setup: (theory -> theory) -> unit
val setup: unit -> theory -> theory
(*proof context*)
type proof
val theory_of_proof: proof -> theory
val transfer_proof: theory -> proof -> proof
val init_proof: theory -> proof
val proof_data_of: theory -> string list
(*generic context*)
datatype generic = Theory of theory | Proof of proof
val cases: (theory -> 'a) -> (proof -> 'a) -> generic -> 'a
val the_theory: generic -> theory
val the_proof: generic -> proof
val map_theory: (theory -> theory) -> generic -> generic
val map_proof: (proof -> proof) -> generic -> generic
val theory_map: (generic -> generic) -> theory -> theory
val proof_map: (generic -> generic) -> proof -> proof
val theory_of: generic -> theory (*total*)
val proof_of: generic -> proof (*total*)
end;
signature PRIVATE_CONTEXT =
sig
include CONTEXT
structure TheoryData:
sig
val declare: string -> Object.T -> (Object.T -> Object.T) -> (Object.T -> Object.T) ->
(Pretty.pp -> Object.T * Object.T -> Object.T) -> serial
val init: serial -> theory -> theory
val get: serial -> (Object.T -> 'a) -> theory -> 'a
val put: serial -> ('a -> Object.T) -> 'a -> theory -> theory
end
structure ProofData:
sig
val declare: string -> (theory -> Object.T) -> serial
val init: serial -> theory -> theory
val get: serial -> (Object.T -> 'a) -> proof -> 'a
val put: serial -> ('a -> Object.T) -> 'a -> proof -> proof
end
end;
structure Context: PRIVATE_CONTEXT =
struct
(*** theory context ***)
(** theory data **)
(* data kinds and access methods *)
local
type kind =
{name: string,
empty: Object.T,
copy: Object.T -> Object.T,
extend: Object.T -> Object.T,
merge: Pretty.pp -> Object.T * Object.T -> Object.T};
val kinds = ref (Inttab.empty: kind Inttab.table);
fun invoke meth_name meth_fn k =
(case Inttab.lookup (! kinds) k of
SOME kind => meth_fn kind |> transform_failure (fn exn =>
EXCEPTION (exn, "Theory data method " ^ #name kind ^ "." ^ meth_name ^ " failed"))
| NONE => sys_error ("Invalid theory data identifier " ^ string_of_int k));
in
fun invoke_name k = invoke "name" (K o #name) k ();
fun invoke_empty k = invoke "empty" (K o #empty) k ();
val invoke_copy = invoke "copy" #copy;
val invoke_extend = invoke "extend" #extend;
fun invoke_merge pp = invoke "merge" (fn kind => #merge kind pp);
fun declare_theory_data name empty copy extend merge =
let
val k = serial ();
val kind = {name = name, empty = empty, copy = copy, extend = extend, merge = merge};
val _ = conditional (Inttab.exists (equal name o #name o #2) (! kinds)) (fn () =>
warning ("Duplicate declaration of theory data " ^ quote name));
val _ = change kinds (Inttab.update (k, kind));
in k end;
val copy_data = Inttab.map' invoke_copy;
val extend_data = Inttab.map' invoke_extend;
fun merge_data pp = Inttab.join (SOME oo invoke_merge pp) o pairself extend_data;
end;
(** datatype theory **)
datatype theory =
Theory of
(*identity*)
{self: theory ref option, (*dynamic self reference -- follows theory changes*)
id: serial * string, (*identifier of this theory*)
ids: string Inttab.table, (*identifiers of ancestors*)
iids: string Inttab.table} * (*identifiers of intermediate checkpoints*)
(*data*)
{theory: Object.T Inttab.table, (*theory data record*)
proof: unit Inttab.table} * (*proof data kinds*)
(*ancestry*)
{parents: theory list, (*immediate predecessors*)
ancestors: theory list} * (*all predecessors*)
(*history*)
{name: string, (*prospective name of finished theory*)
version: int, (*checkpoint counter*)
intermediates: theory list}; (*intermediate checkpoints*)
exception THEORY of string * theory list;
fun rep_theory (Theory args) = args;
val identity_of = #1 o rep_theory;
val data_of = #2 o rep_theory;
val ancestry_of = #3 o rep_theory;
val history_of = #4 o rep_theory;
fun make_identity self id ids iids = {self = self, id = id, ids = ids, iids = iids};
fun make_data theory proof = {theory = theory, proof = proof};
fun make_ancestry parents ancestors = {parents = parents, ancestors = ancestors};
fun make_history name vers ints = {name = name, version = vers, intermediates = ints};
fun map_theory_data f {theory, proof} = make_data (f theory) proof;
fun map_proof_data f {theory, proof} = make_data theory (f proof);
val the_self = the o #self o identity_of;
val parents_of = #parents o ancestry_of;
val ancestors_of = #ancestors o ancestry_of;
val theory_name = #name o history_of;
(* staleness *)
fun eq_id ((i: int, _), (j, _)) = (i = j);
fun is_stale
(Theory ({self = SOME (ref (Theory ({id = id', ...}, _, _, _))), id, ...}, _, _, _)) =
not (eq_id (id, id'))
| is_stale (Theory ({self = NONE, ...}, _, _, _)) = true;
fun vitalize (thy as Theory ({self = SOME r, ...}, _, _, _)) = (r := thy; thy)
| vitalize (thy as Theory ({self = NONE, id, ids, iids}, data, ancestry, history)) =
let
val r = ref thy;
val thy' = Theory (make_identity (SOME r) id ids iids, data, ancestry, history);
in r := thy'; thy' end;
(* names *)
val ProtoPureN = "ProtoPure";
val PureN = "Pure";
val CPureN = "CPure";
val draftN = "#";
fun draft_id (_, name) = (name = draftN);
val is_draft = draft_id o #id o identity_of;
fun exists_name name (Theory ({id, ids, iids, ...}, _, _, _)) =
name = #2 id orelse
Inttab.exists (equal name o #2) ids orelse
Inttab.exists (equal name o #2) iids;
fun names_of (Theory ({id, ids, iids, ...}, _, _, _)) =
rev (#2 id :: Inttab.fold (cons o #2) iids (Inttab.fold (cons o #2) ids []));
fun pretty_thy thy =
Pretty.str_list "{" "}" (names_of thy @ (if is_stale thy then ["!"] else []));
val string_of_thy = Pretty.string_of o pretty_thy;
val pprint_thy = Pretty.pprint o pretty_thy;
fun pretty_abbrev_thy thy =
let
val names = names_of thy;
val n = length names;
val abbrev = if n > 5 then "..." :: List.drop (names, n - 5) else names;
in Pretty.str_list "{" "}" abbrev end;
val str_of_thy = Pretty.str_of o pretty_abbrev_thy;
(* consistency *) (*exception TERM*)
fun check_thy thy =
if is_stale thy then
raise TERM ("Stale theory encountered:\n" ^ string_of_thy thy, [])
else thy;
fun check_ins id ids =
if draft_id id orelse Inttab.defined ids (#1 id) then ids
else if Inttab.exists (equal (#2 id) o #2) ids then
raise TERM ("Different versions of theory component " ^ quote (#2 id), [])
else Inttab.update id ids;
fun check_insert intermediate id (ids, iids) =
let val ids' = check_ins id ids and iids' = check_ins id iids
in if intermediate then (ids, iids') else (ids', iids) end;
fun check_merge
(Theory ({id = id1, ids = ids1, iids = iids1, ...}, _, _, history1))
(Theory ({id = id2, ids = ids2, iids = iids2, ...}, _, _, history2)) =
(Inttab.fold check_ins ids2 ids1, Inttab.fold check_ins iids2 iids1)
|> check_insert (#version history1 > 0) id1
|> check_insert (#version history2 > 0) id2;
(* equality and inclusion *)
val eq_thy = eq_id o pairself (#id o identity_of o check_thy);
fun proper_subthy
(Theory ({id = (i, _), ...}, _, _, _), Theory ({ids, iids, ...}, _, _, _)) =
Inttab.defined ids i orelse Inttab.defined iids i;
fun subthy thys = eq_thy thys orelse proper_subthy thys;
fun joinable (thy1, thy2) = subthy (thy1, thy2) orelse subthy (thy2, thy1);
(* theory references *)
(*theory_ref provides a safe way to store dynamic references to a
theory in external data structures -- a plain theory value would
become stale as the self reference moves on*)
datatype theory_ref = TheoryRef of theory ref;
val self_ref = TheoryRef o the_self o check_thy;
fun deref (TheoryRef (ref thy)) = thy;
(* trivial merge *) (*exception TERM*)
fun merge (thy1, thy2) =
if eq_thy (thy1, thy2) then thy1
else if proper_subthy (thy2, thy1) then thy1
else if proper_subthy (thy1, thy2) then thy2
else (check_merge thy1 thy2;
raise TERM (cat_lines ["Attempt to perform non-trivial merge of theories:",
str_of_thy thy1, str_of_thy thy2], []));
fun merge_refs (ref1, ref2) =
if ref1 = ref2 then ref1
else self_ref (merge (deref ref1, deref ref2));
(** build theories **)
(* primitives *)
fun create_thy name self id ids iids data ancestry history =
let
val {version, name = _, intermediates = _} = history;
val intermediate = version > 0;
val (ids', iids') = check_insert intermediate id (ids, iids);
val id' = (serial (), name);
val _ = check_insert intermediate id' (ids', iids');
val identity' = make_identity self id' ids' iids';
in vitalize (Theory (identity', data, ancestry, history)) end;
fun change_thy name f (thy as Theory ({self, id, ids, iids}, data, ancestry, history)) =
let
val _ = check_thy thy;
val (self', data', ancestry') =
if is_draft thy then (self, data, ancestry) (*destructive change!*)
else if #version history > 0
then (NONE, map_theory_data copy_data data, ancestry)
else (NONE, map_theory_data extend_data data,
make_ancestry [thy] (thy :: #ancestors ancestry));
val data'' = f data';
in create_thy name self' id ids iids data'' ancestry' history end;
fun name_thy name = change_thy name I;
val modify_thy = change_thy draftN;
val extend_thy = modify_thy I;
fun copy_thy (thy as Theory ({id, ids, iids, ...}, data, ancestry, history)) =
(check_thy thy;
create_thy draftN NONE id ids iids (map_theory_data copy_data data) ancestry history);
val pre_pure_thy = create_thy draftN NONE (serial (), draftN) Inttab.empty Inttab.empty
(make_data Inttab.empty Inttab.empty) (make_ancestry [] []) (make_history ProtoPureN 0 []);
(* named theory nodes *)
fun merge_thys pp (thy1, thy2) =
if exists_name CPureN thy1 <> exists_name CPureN thy2 then
error "Cannot merge Pure and CPure developments"
else
let
val (ids, iids) = check_merge thy1 thy2;
val data1 = data_of thy1 and data2 = data_of thy2;
val data = make_data
(merge_data (pp thy1) (#theory data1, #theory data2))
(Inttab.merge (K true) (#proof data1, #proof data2));
val ancestry = make_ancestry [] [];
val history = make_history "" 0 [];
in create_thy draftN NONE (serial (), draftN) ids iids data ancestry history end;
fun maximal_thys thys =
thys |> filter (fn thy => not (exists (fn thy' => proper_subthy (thy, thy')) thys));
fun begin_thy pp name imports =
if name = draftN then error ("Illegal theory name: " ^ quote draftN)
else
let
val parents =
maximal_thys (gen_distinct eq_thy (map check_thy imports));
val ancestors = gen_distinct eq_thy (parents @ List.concat (map ancestors_of parents));
val Theory ({id, ids, iids, ...}, data, _, _) =
(case parents of
[] => error "No parent theories"
| [thy] => extend_thy thy
| thy :: thys => Library.foldl (merge_thys pp) (thy, thys));
val ancestry = make_ancestry parents ancestors;
val history = make_history name 0 [];
in create_thy draftN NONE id ids iids data ancestry history end;
(* undoable checkpoints *)
fun checkpoint_thy thy =
if not (is_draft thy) then thy
else
let
val {name, version, intermediates} = history_of thy;
val thy' as Theory (identity', data', ancestry', _) =
name_thy (name ^ ":" ^ string_of_int version) thy;
val history' = make_history name (version + 1) (thy' :: intermediates);
in vitalize (Theory (identity', data', ancestry', history')) end;
fun finish_thy thy =
let
val {name, version, intermediates} = history_of thy;
val rs = map (the_self o check_thy) intermediates;
val thy' as Theory ({self, id, ids, ...}, data', ancestry', _) = name_thy name thy;
val identity' = make_identity self id ids Inttab.empty;
val history' = make_history name 0 [];
val thy'' = vitalize (Theory (identity', data', ancestry', history'));
val _ = List.app (fn r => r := thy'') rs;
in thy'' end;
(* theory data *)
fun dest_data name_of tab =
map name_of (Inttab.keys tab)
|> map (rpair ()) |> Symtab.make_multi |> Symtab.dest
|> map (apsnd length)
|> map (fn (name, 1) => name | (name, n) => name ^ enclose "[" "]" (string_of_int n));
val theory_data_of = dest_data invoke_name o #theory o data_of;
structure TheoryData =
struct
val declare = declare_theory_data;
fun get k dest thy =
(case Inttab.lookup (#theory (data_of thy)) k of
SOME x => (dest x handle Match =>
error ("Failed to access theory data " ^ quote (invoke_name k)))
| NONE => error ("Uninitialized theory data " ^ quote (invoke_name k)));
fun put k mk x = modify_thy (map_theory_data (Inttab.update (k, mk x)));
fun init k = put k I (invoke_empty k);
end;
(*** ML theory context ***)
local
val current_theory = ref (NONE: theory option);
in
fun get_context () = ! current_theory;
fun set_context opt_thy = current_theory := opt_thy;
fun setmp opt_thy f x = Library.setmp current_theory opt_thy f x;
end;
fun the_context () =
(case get_context () of
SOME thy => thy
| _ => error "Unknown theory context");
fun context thy = set_context (SOME thy);
fun reset_context () = set_context NONE;
fun pass opt_thy f x =
setmp opt_thy (fn x => let val y = f x in (y, get_context ()) end) x;
fun pass_theory thy f x =
(case pass (SOME thy) f x of
(y, SOME thy') => (y, thy')
| (_, NONE) => error "Lost theory context in ML");
fun save f x = setmp (get_context ()) f x;
(* map context *)
nonfix >>;
fun >> f = set_context (SOME (f (the_context ())));
(* use ML text *)
val ml_output = (writeln, Output.error_msg);
fun use_output verbose txt =
Output.ML_errors (use_text ml_output verbose) (Symbol.escape txt);
fun use_mltext txt verbose opt_thy = setmp opt_thy (fn () => use_output verbose txt) ();
fun use_mltext_theory txt verbose thy = #2 (pass_theory thy (use_output verbose) txt);
fun use_context txt = use_mltext_theory ("Context.>> (" ^ txt ^ ");") false;
fun use_let bind body txt =
use_context ("let " ^ bind ^ " = " ^ txt ^ " in\n" ^ body ^ " end");
(* delayed theory setup *)
local
val setup_fn = ref (I: theory -> theory);
in
fun add_setup f = setup_fn := (! setup_fn #> f);
fun setup () = let val f = ! setup_fn in setup_fn := I; f end;
end;
(*** proof context ***)
(* datatype proof *)
datatype proof = Proof of theory_ref * Object.T Inttab.table;
fun theory_of_proof (Proof (thy_ref, _)) = deref thy_ref;
fun data_of_proof (Proof (_, data)) = data;
fun map_prf f (Proof (thy_ref, data)) = Proof (thy_ref, f data);
fun transfer_proof thy' (prf as Proof (thy_ref, data)) =
if not (subthy (deref thy_ref, thy')) then
error "transfer proof context: no a super theory"
else Proof (self_ref thy', data);
(* proof data kinds *)
local
type kind =
{name: string,
init: theory -> Object.T};
val kinds = ref (Inttab.empty: kind Inttab.table);
fun invoke meth_name meth_fn k =
(case Inttab.lookup (! kinds) k of
SOME kind => meth_fn kind |> transform_failure (fn exn =>
EXCEPTION (exn, "Proof data method " ^ #name kind ^ "." ^ meth_name ^ " failed"))
| NONE => sys_error ("Invalid proof data identifier " ^ string_of_int k));
fun invoke_name k = invoke "name" (K o #name) k ();
val invoke_init = invoke "init" #init;
in
val proof_data_of = dest_data invoke_name o #proof o data_of;
fun init_proof thy =
Proof (self_ref thy, Inttab.map' (fn k => fn _ => invoke_init k thy) (#proof (data_of thy)));
structure ProofData =
struct
fun declare name init =
let
val k = serial ();
val kind = {name = name, init = init};
val _ = conditional (Inttab.exists (equal name o #name o #2) (! kinds)) (fn () =>
warning ("Duplicate declaration of proof data " ^ quote name));
val _ = change kinds (Inttab.update (k, kind));
in k end;
fun init k = modify_thy (map_proof_data (Inttab.update (k, ())));
fun get k dest prf =
(case Inttab.lookup (data_of_proof prf) k of
SOME x => (dest x handle Match =>
error ("Failed to access proof data " ^ quote (invoke_name k)))
| NONE => error ("Uninitialized proof data " ^ quote (invoke_name k)));
fun put k mk x = map_prf (Inttab.update (k, mk x));
end;
end;
(*** generic context ***)
datatype generic = Theory of theory | Proof of proof;
fun cases f _ (Theory thy) = f thy
| cases _ g (Proof prf) = g prf;
val the_theory = cases I (fn _ => raise Fail "Ill-typed context: theory expected");
val the_proof = cases (fn _ => raise Fail "Ill-typed context: proof expected") I;
fun map_theory f = Theory o f o the_theory;
fun map_proof f = Proof o f o the_proof;
fun theory_map f = the_theory o f o Theory;
fun proof_map f = the_proof o f o Proof;
val theory_of = cases I theory_of_proof;
val proof_of = cases init_proof I;
end;
structure BasicContext: BASIC_CONTEXT = Context;
open BasicContext;
(*** type-safe interfaces for data declarations ***)
(** theory data **)
signature THEORY_DATA_ARGS =
sig
val name: string
type T
val empty: T
val copy: T -> T
val extend: T -> T
val merge: Pretty.pp -> T * T -> T
val print: theory -> T -> unit
end;
signature THEORY_DATA =
sig
type T
val init: theory -> theory
val print: theory -> unit
val get: theory -> T
val get_sg: theory -> T (*obsolete*)
val put: T -> theory -> theory
val map: (T -> T) -> theory -> theory
end;
functor TheoryDataFun(Data: THEORY_DATA_ARGS): THEORY_DATA =
struct
structure TheoryData = Context.TheoryData;
type T = Data.T;
exception Data of T;
val kind = TheoryData.declare Data.name
(Data Data.empty)
(fn Data x => Data (Data.copy x))
(fn Data x => Data (Data.extend x))
(fn pp => fn (Data x1, Data x2) => Data (Data.merge pp (x1, x2)));
val init = TheoryData.init kind;
val get = TheoryData.get kind (fn Data x => x);
val get_sg = get;
fun print thy = Data.print thy (get thy);
val put = TheoryData.put kind Data;
fun map f thy = put (f (get thy)) thy;
end;
(** proof data **)
signature PROOF_DATA_ARGS =
sig
val name: string
type T
val init: theory -> T
val print: Context.proof -> T -> unit
end;
signature PROOF_DATA =
sig
type T
val init: theory -> theory
val print: Context.proof -> unit
val get: Context.proof -> T
val put: T -> Context.proof -> Context.proof
val map: (T -> T) -> Context.proof -> Context.proof
end;
functor ProofDataFun(Data: PROOF_DATA_ARGS): PROOF_DATA =
struct
structure ProofData = Context.ProofData;
type T = Data.T;
exception Data of T;
val kind = ProofData.declare Data.name (Data o Data.init);
val init = ProofData.init kind;
val get = ProofData.get kind (fn Data x => x);
fun print prf = Data.print prf (get prf);
val put = ProofData.put kind Data;
fun map f prf = put (f (get prf)) prf;
end;
(** generic data **)
signature GENERIC_DATA_ARGS =
sig
val name: string
type T
val empty: T
val extend: T -> T
val merge: Pretty.pp -> T * T -> T
val print: Context.generic -> T -> unit
end;
signature GENERIC_DATA =
sig
type T
val init: theory -> theory
val get: Context.generic -> T
val put: T -> Context.generic -> Context.generic
val map: (T -> T) -> Context.generic -> Context.generic
val print: Context.generic -> unit
end;
functor GenericDataFun(Data: GENERIC_DATA_ARGS): GENERIC_DATA =
struct
structure ThyData = TheoryDataFun(open Data val copy = I fun print _ _ = ());
structure PrfData =
ProofDataFun(val name = Data.name type T = Data.T val init = ThyData.get fun print _ _ = ());
type T = Data.T;
val init = ThyData.init #> PrfData.init;
fun get (Context.Theory thy) = ThyData.get thy
| get (Context.Proof prf) = PrfData.get prf;
fun put x (Context.Theory thy) = Context.Theory (ThyData.put x thy)
| put x (Context.Proof prf) = Context.Proof (PrfData.put x prf);
fun map f ctxt = put (f (get ctxt)) ctxt;
fun print ctxt = Data.print ctxt (get ctxt);
end;
(*hide private interface*)
structure Context: CONTEXT = Context;