ordinal: DEFINITION of < and le to replace : and <= on ordinals! Many
changes
epsilon,arith: many changes
ordinal/succ_mem_succI/E: deleted; use succ_leI/E
nat/nat_0_in_succ: deleted; use nat_0_le
univ/Vset_rankI: deleted; use VsetI
(* Title: ZF/arith.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Arithmetic operators and their definitions
*)
Arith = Epsilon +
consts
rec :: "[i, i, [i,i]=>i]=>i"
"#*" :: "[i,i]=>i" (infixl 70)
div :: "[i,i]=>i" (infixl 70)
mod :: "[i,i]=>i" (infixl 70)
"#+" :: "[i,i]=>i" (infixl 65)
"#-" :: "[i,i]=>i" (infixl 65)
rules
rec_def "rec(k,a,b) == transrec(k, %n f. nat_case(a, %m. b(m, f`m), n))"
add_def "m#+n == rec(m, n, %u v.succ(v))"
diff_def "m#-n == rec(n, m, %u v. rec(v, 0, %x y.x))"
mult_def "m#*n == rec(m, 0, %u v. n #+ v)"
mod_def "m mod n == transrec(m, %j f. if(j<n, j, f`(j#-n)))"
div_def "m div n == transrec(m, %j f. if(j<n, 0, succ(f`(j#-n))))"
end