got rid of split_diff, which duplicated nat_diff_split, and
also disposed of remove_diff_ss
(* Title: HOLCF/cfun2.thy
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for cfun2.thy
*)
open Cfun2;
(* for compatibility with old HOLCF-Version *)
qed_goal "inst_cfun_po" thy "(op <<)=(%f1 f2. Rep_CFun f1 << Rep_CFun f2)"
(fn prems =>
[
(fold_goals_tac [less_cfun_def]),
(rtac refl 1)
]);
(* ------------------------------------------------------------------------ *)
(* access to less_cfun in class po *)
(* ------------------------------------------------------------------------ *)
qed_goal "less_cfun" thy "( f1 << f2 ) = (Rep_CFun(f1) << Rep_CFun(f2))"
(fn prems =>
[
(simp_tac (simpset() addsimps [inst_cfun_po]) 1)
]);
(* ------------------------------------------------------------------------ *)
(* Type 'a ->'b is pointed *)
(* ------------------------------------------------------------------------ *)
qed_goal "minimal_cfun" thy "Abs_CFun(% x. UU) << f"
(fn prems =>
[
(stac less_cfun 1),
(stac Abs_Cfun_inverse2 1),
(rtac cont_const 1),
(rtac minimal_fun 1)
]);
bind_thm ("UU_cfun_def",minimal_cfun RS minimal2UU RS sym);
qed_goal "least_cfun" thy "? x::'a->'b::pcpo.!y. x<<y"
(fn prems =>
[
(res_inst_tac [("x","Abs_CFun(% x. UU)")] exI 1),
(rtac (minimal_cfun RS allI) 1)
]);
(* ------------------------------------------------------------------------ *)
(* Rep_CFun yields continuous functions in 'a => 'b *)
(* this is continuity of Rep_CFun in its 'second' argument *)
(* cont_Rep_CFun2 ==> monofun_Rep_CFun2 & contlub_Rep_CFun2 *)
(* ------------------------------------------------------------------------ *)
qed_goal "cont_Rep_CFun2" thy "cont(Rep_CFun(fo))"
(fn prems =>
[
(res_inst_tac [("P","cont")] CollectD 1),
(fold_goals_tac [CFun_def]),
(rtac Rep_Cfun 1)
]);
bind_thm ("monofun_Rep_CFun2", cont_Rep_CFun2 RS cont2mono);
(* monofun(Rep_CFun(?fo1)) *)
bind_thm ("contlub_Rep_CFun2", cont_Rep_CFun2 RS cont2contlub);
(* contlub(Rep_CFun(?fo1)) *)
(* ------------------------------------------------------------------------ *)
(* expanded thms cont_Rep_CFun2, contlub_Rep_CFun2 *)
(* looks nice with mixfix syntac *)
(* ------------------------------------------------------------------------ *)
bind_thm ("cont_cfun_arg", (cont_Rep_CFun2 RS contE RS spec RS mp));
(* chain(?x1) ==> range (%i. ?fo3`(?x1 i)) <<| ?fo3`(lub (range ?x1)) *)
bind_thm ("contlub_cfun_arg", (contlub_Rep_CFun2 RS contlubE RS spec RS mp));
(* chain(?x1) ==> ?fo4`(lub (range ?x1)) = lub (range (%i. ?fo4`(?x1 i))) *)
(* ------------------------------------------------------------------------ *)
(* Rep_CFun is monotone in its 'first' argument *)
(* ------------------------------------------------------------------------ *)
qed_goalw "monofun_Rep_CFun1" thy [monofun] "monofun(Rep_CFun)"
(fn prems =>
[
(strip_tac 1),
(etac (less_cfun RS subst) 1)
]);
(* ------------------------------------------------------------------------ *)
(* monotonicity of application Rep_CFun in mixfix syntax [_]_ *)
(* ------------------------------------------------------------------------ *)
qed_goal "monofun_cfun_fun" thy "f1 << f2 ==> f1`x << f2`x"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("x","x")] spec 1),
(rtac (less_fun RS subst) 1),
(etac (monofun_Rep_CFun1 RS monofunE RS spec RS spec RS mp) 1)
]);
bind_thm ("monofun_cfun_arg", monofun_Rep_CFun2 RS monofunE RS spec RS spec RS mp);
(* ?x2 << ?x1 ==> ?fo5`?x2 << ?fo5`?x1 *)
(* ------------------------------------------------------------------------ *)
(* monotonicity of Rep_CFun in both arguments in mixfix syntax [_]_ *)
(* ------------------------------------------------------------------------ *)
qed_goal "monofun_cfun" thy
"[|f1<<f2;x1<<x2|] ==> f1`x1 << f2`x2"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac trans_less 1),
(etac monofun_cfun_arg 1),
(etac monofun_cfun_fun 1)
]);
qed_goal "strictI" thy "f`x = UU ==> f`UU = UU" (fn prems => [
cut_facts_tac prems 1,
rtac (eq_UU_iff RS iffD2) 1,
etac subst 1,
rtac (minimal RS monofun_cfun_arg) 1]);
(* ------------------------------------------------------------------------ *)
(* ch2ch - rules for the type 'a -> 'b *)
(* use MF2 lemmas from Cont.ML *)
(* ------------------------------------------------------------------------ *)
qed_goal "ch2ch_Rep_CFunR" thy
"chain(Y) ==> chain(%i. f`(Y i))"
(fn prems =>
[
(cut_facts_tac prems 1),
(etac (monofun_Rep_CFun2 RS ch2ch_MF2R) 1)
]);
bind_thm ("ch2ch_Rep_CFunL", monofun_Rep_CFun1 RS ch2ch_MF2L);
(* chain(?F) ==> chain (%i. ?F i`?x) *)
(* ------------------------------------------------------------------------ *)
(* the lub of a chain of continous functions is monotone *)
(* use MF2 lemmas from Cont.ML *)
(* ------------------------------------------------------------------------ *)
qed_goal "lub_cfun_mono" thy
"chain(F) ==> monofun(% x. lub(range(% j.(F j)`x)))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac lub_MF2_mono 1),
(rtac monofun_Rep_CFun1 1),
(rtac (monofun_Rep_CFun2 RS allI) 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* a lemma about the exchange of lubs for type 'a -> 'b *)
(* use MF2 lemmas from Cont.ML *)
(* ------------------------------------------------------------------------ *)
qed_goal "ex_lubcfun" thy
"[| chain(F); chain(Y) |] ==>\
\ lub(range(%j. lub(range(%i. F(j)`(Y i))))) =\
\ lub(range(%i. lub(range(%j. F(j)`(Y i)))))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac ex_lubMF2 1),
(rtac monofun_Rep_CFun1 1),
(rtac (monofun_Rep_CFun2 RS allI) 1),
(atac 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* the lub of a chain of cont. functions is continuous *)
(* ------------------------------------------------------------------------ *)
qed_goal "cont_lubcfun" thy
"chain(F) ==> cont(% x. lub(range(% j. F(j)`x)))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac monocontlub2cont 1),
(etac lub_cfun_mono 1),
(rtac contlubI 1),
(strip_tac 1),
(stac (contlub_cfun_arg RS ext) 1),
(atac 1),
(etac ex_lubcfun 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* type 'a -> 'b is chain complete *)
(* ------------------------------------------------------------------------ *)
qed_goal "lub_cfun" thy
"chain(CCF) ==> range(CCF) <<| (LAM x. lub(range(% i. CCF(i)`x)))"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac is_lubI 1),
(rtac conjI 1),
(rtac ub_rangeI 1),
(rtac allI 1),
(stac less_cfun 1),
(stac Abs_Cfun_inverse2 1),
(etac cont_lubcfun 1),
(rtac (lub_fun RS is_lubE RS conjunct1 RS ub_rangeE RS spec) 1),
(etac (monofun_Rep_CFun1 RS ch2ch_monofun) 1),
(strip_tac 1),
(stac less_cfun 1),
(stac Abs_Cfun_inverse2 1),
(etac cont_lubcfun 1),
(rtac (lub_fun RS is_lubE RS conjunct2 RS spec RS mp) 1),
(etac (monofun_Rep_CFun1 RS ch2ch_monofun) 1),
(etac (monofun_Rep_CFun1 RS ub2ub_monofun) 1)
]);
bind_thm ("thelub_cfun", lub_cfun RS thelubI);
(*
chain(?CCF1) ==> lub (range ?CCF1) = (LAM x. lub (range (%i. ?CCF1 i`x)))
*)
qed_goal "cpo_cfun" thy
"chain(CCF::nat=>('a->'b)) ==> ? x. range(CCF) <<| x"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac exI 1),
(etac lub_cfun 1)
]);
(* ------------------------------------------------------------------------ *)
(* Extensionality in 'a -> 'b *)
(* ------------------------------------------------------------------------ *)
qed_goal "ext_cfun" Cfun1.thy "(!!x. f`x = g`x) ==> f = g"
(fn prems =>
[
(res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1),
(res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1),
(res_inst_tac [("f","Abs_CFun")] arg_cong 1),
(rtac ext 1),
(resolve_tac prems 1)
]);
(* ------------------------------------------------------------------------ *)
(* Monotonicity of Abs_CFun *)
(* ------------------------------------------------------------------------ *)
qed_goal "semi_monofun_Abs_CFun" thy
"[|cont(f);cont(g);f<<g|]==>Abs_CFun(f)<<Abs_CFun(g)"
(fn prems =>
[
(rtac (less_cfun RS iffD2) 1),
(stac Abs_Cfun_inverse2 1),
(resolve_tac prems 1),
(stac Abs_Cfun_inverse2 1),
(resolve_tac prems 1),
(resolve_tac prems 1)
]);
(* ------------------------------------------------------------------------ *)
(* Extenionality wrt. << in 'a -> 'b *)
(* ------------------------------------------------------------------------ *)
qed_goal "less_cfun2" thy "(!!x. f`x << g`x) ==> f << g"
(fn prems =>
[
(res_inst_tac [("t","f")] (Rep_Cfun_inverse RS subst) 1),
(res_inst_tac [("t","g")] (Rep_Cfun_inverse RS subst) 1),
(rtac semi_monofun_Abs_CFun 1),
(rtac cont_Rep_CFun2 1),
(rtac cont_Rep_CFun2 1),
(rtac (less_fun RS iffD2) 1),
(rtac allI 1),
(resolve_tac prems 1)
]);