(* Title: HOL/Nitpick_Examples/minipick.ML
Author: Jasmin Blanchette, TU Muenchen
Copyright 2009-2010
Finite model generation for HOL formulas using Kodkod, minimalistic version.
*)
signature MINIPICK =
sig
val minipick : Proof.context -> int -> term -> string
val minipick_expect : Proof.context -> string -> int -> term -> unit
end;
structure Minipick : MINIPICK =
struct
open Kodkod
open Nitpick_Util
open Nitpick_HOL
open Nitpick_Peephole
open Nitpick_Kodkod
datatype rep =
S_Rep |
R_Rep of bool
fun check_type ctxt raw_infinite (Type (\<^type_name>\<open>fun\<close>, Ts)) =
List.app (check_type ctxt raw_infinite) Ts
| check_type ctxt raw_infinite (Type (\<^type_name>\<open>prod\<close>, Ts)) =
List.app (check_type ctxt raw_infinite) Ts
| check_type _ _ \<^typ>\<open>bool\<close> = ()
| check_type _ _ (TFree (_, \<^sort>\<open>{}\<close>)) = ()
| check_type _ _ (TFree (_, \<^sort>\<open>HOL.type\<close>)) = ()
| check_type ctxt raw_infinite T =
if raw_infinite T then
()
else
error ("Not supported: Type " ^ quote (Syntax.string_of_typ ctxt T) ^ ".")
fun atom_schema_of S_Rep card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
replicate_list (card T1) (atom_schema_of S_Rep card T2)
| atom_schema_of (R_Rep true) card
(Type (\<^type_name>\<open>fun\<close>, [T1, \<^typ>\<open>bool\<close>])) =
atom_schema_of S_Rep card T1
| atom_schema_of (rep as R_Rep _) card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
atom_schema_of S_Rep card T1 @ atom_schema_of rep card T2
| atom_schema_of _ card (Type (\<^type_name>\<open>prod\<close>, Ts)) =
maps (atom_schema_of S_Rep card) Ts
| atom_schema_of _ card T = [card T]
val arity_of = length ooo atom_schema_of
val atom_seqs_of = map (AtomSeq o rpair 0) ooo atom_schema_of
val atom_seq_product_of = foldl1 Product ooo atom_seqs_of
fun index_for_bound_var _ [_] 0 = 0
| index_for_bound_var card (_ :: Ts) 0 =
index_for_bound_var card Ts 0 + arity_of S_Rep card (hd Ts)
| index_for_bound_var card Ts n = index_for_bound_var card (tl Ts) (n - 1)
fun vars_for_bound_var card R Ts j =
map (curry Var 1) (index_seq (index_for_bound_var card Ts j)
(arity_of R card (nth Ts j)))
val rel_expr_for_bound_var = foldl1 Product oooo vars_for_bound_var
fun decls_for R card Ts T =
map2 (curry DeclOne o pair 1)
(index_seq (index_for_bound_var card (T :: Ts) 0)
(arity_of R card (nth (T :: Ts) 0)))
(atom_seqs_of R card T)
val atom_product = foldl1 Product o map Atom
val false_atom_num = 0
val true_atom_num = 1
val false_atom = Atom false_atom_num
val true_atom = Atom true_atom_num
fun kodkod_formula_from_term ctxt total card complete concrete frees =
let
fun F_from_S_rep (SOME false) r = Not (RelEq (r, false_atom))
| F_from_S_rep _ r = RelEq (r, true_atom)
fun S_rep_from_F NONE f = RelIf (f, true_atom, false_atom)
| S_rep_from_F (SOME true) f = RelIf (f, true_atom, None)
| S_rep_from_F (SOME false) f = RelIf (Not f, false_atom, None)
fun R_rep_from_S_rep (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) r =
if total andalso T2 = bool_T then
let
val jss = atom_schema_of S_Rep card T1 |> map (rpair 0)
|> all_combinations
in
map2 (fn i => fn js =>
(*
RelIf (F_from_S_rep NONE (Project (r, [Num i])),
atom_product js, empty_n_ary_rel (length js))
*)
Join (Project (r, [Num i]),
atom_product (false_atom_num :: js))
) (index_seq 0 (length jss)) jss
|> foldl1 Union
end
else
let
val jss = atom_schema_of S_Rep card T1 |> map (rpair 0)
|> all_combinations
val arity2 = arity_of S_Rep card T2
in
map2 (fn i => fn js =>
Product (atom_product js,
Project (r, num_seq (i * arity2) arity2)
|> R_rep_from_S_rep T2))
(index_seq 0 (length jss)) jss
|> foldl1 Union
end
| R_rep_from_S_rep _ r = r
fun S_rep_from_R_rep Ts (T as Type (\<^type_name>\<open>fun\<close>, _)) r =
Comprehension (decls_for S_Rep card Ts T,
RelEq (R_rep_from_S_rep T
(rel_expr_for_bound_var card S_Rep (T :: Ts) 0), r))
| S_rep_from_R_rep _ _ r = r
fun partial_eq pos Ts (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) t1 t2 =
HOLogic.mk_all ("x", T1,
HOLogic.eq_const T2 $ (incr_boundvars 1 t1 $ Bound 0)
$ (incr_boundvars 1 t2 $ Bound 0))
|> to_F (SOME pos) Ts
| partial_eq pos Ts T t1 t2 =
if pos andalso not (concrete T) then
False
else
(t1, t2) |> apply2 (to_R_rep Ts)
|> (if pos then Some o Intersect else Lone o Union)
and to_F pos Ts t =
(case t of
\<^const>\<open>Not\<close> $ t1 => Not (to_F (Option.map not pos) Ts t1)
| \<^const>\<open>False\<close> => False
| \<^const>\<open>True\<close> => True
| Const (\<^const_name>\<open>All\<close>, _) $ Abs (_, T, t') =>
if pos = SOME true andalso not (complete T) then False
else All (decls_for S_Rep card Ts T, to_F pos (T :: Ts) t')
| (t0 as Const (\<^const_name>\<open>All\<close>, _)) $ t1 =>
to_F pos Ts (t0 $ eta_expand Ts t1 1)
| Const (\<^const_name>\<open>Ex\<close>, _) $ Abs (_, T, t') =>
if pos = SOME false andalso not (complete T) then True
else Exist (decls_for S_Rep card Ts T, to_F pos (T :: Ts) t')
| (t0 as Const (\<^const_name>\<open>Ex\<close>, _)) $ t1 =>
to_F pos Ts (t0 $ eta_expand Ts t1 1)
| Const (\<^const_name>\<open>HOL.eq\<close>, Type (_, [T, _])) $ t1 $ t2 =>
(case pos of
NONE => RelEq (to_R_rep Ts t1, to_R_rep Ts t2)
| SOME pos => partial_eq pos Ts T t1 t2)
| Const (\<^const_name>\<open>ord_class.less_eq\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>]), _]))
$ t1 $ t2 =>
(case pos of
NONE => Subset (to_R_rep Ts t1, to_R_rep Ts t2)
| SOME true =>
Subset (Difference (atom_seq_product_of S_Rep card T',
Join (to_R_rep Ts t1, false_atom)),
Join (to_R_rep Ts t2, true_atom))
| SOME false =>
Subset (Join (to_R_rep Ts t1, true_atom),
Difference (atom_seq_product_of S_Rep card T',
Join (to_R_rep Ts t2, false_atom))))
| \<^const>\<open>HOL.conj\<close> $ t1 $ t2 => And (to_F pos Ts t1, to_F pos Ts t2)
| \<^const>\<open>HOL.disj\<close> $ t1 $ t2 => Or (to_F pos Ts t1, to_F pos Ts t2)
| \<^const>\<open>HOL.implies\<close> $ t1 $ t2 =>
Implies (to_F (Option.map not pos) Ts t1, to_F pos Ts t2)
| Const (\<^const_name>\<open>Set.member\<close>, _) $ t1 $ t2 => to_F pos Ts (t2 $ t1)
| t1 $ t2 =>
(case pos of
NONE => Subset (to_S_rep Ts t2, to_R_rep Ts t1)
| SOME pos =>
let
val kt1 = to_R_rep Ts t1
val kt2 = to_S_rep Ts t2
val kT = atom_seq_product_of S_Rep card (fastype_of1 (Ts, t2))
in
if pos then
Not (Subset (kt2, Difference (kT, Join (kt1, true_atom))))
else
Subset (kt2, Difference (kT, Join (kt1, false_atom)))
end)
| _ => raise SAME ())
handle SAME () => F_from_S_rep pos (to_R_rep Ts t)
and to_S_rep Ts t =
case t of
Const (\<^const_name>\<open>Pair\<close>, _) $ t1 $ t2 =>
Product (to_S_rep Ts t1, to_S_rep Ts t2)
| Const (\<^const_name>\<open>Pair\<close>, _) $ _ => to_S_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>Pair\<close>, _) => to_S_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>fst\<close>, _) $ t1 =>
let val fst_arity = arity_of S_Rep card (fastype_of1 (Ts, t)) in
Project (to_S_rep Ts t1, num_seq 0 fst_arity)
end
| Const (\<^const_name>\<open>fst\<close>, _) => to_S_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>snd\<close>, _) $ t1 =>
let
val pair_arity = arity_of S_Rep card (fastype_of1 (Ts, t1))
val snd_arity = arity_of S_Rep card (fastype_of1 (Ts, t))
val fst_arity = pair_arity - snd_arity
in Project (to_S_rep Ts t1, num_seq fst_arity snd_arity) end
| Const (\<^const_name>\<open>snd\<close>, _) => to_S_rep Ts (eta_expand Ts t 1)
| Bound j => rel_expr_for_bound_var card S_Rep Ts j
| _ => S_rep_from_R_rep Ts (fastype_of1 (Ts, t)) (to_R_rep Ts t)
and partial_set_op swap1 swap2 op1 op2 Ts t1 t2 =
let
val kt1 = to_R_rep Ts t1
val kt2 = to_R_rep Ts t2
val (a11, a21) = (false_atom, true_atom) |> swap1 ? swap
val (a12, a22) = (false_atom, true_atom) |> swap2 ? swap
in
Union (Product (op1 (Join (kt1, a11), Join (kt2, a12)), true_atom),
Product (op2 (Join (kt1, a21), Join (kt2, a22)), false_atom))
end
and to_R_rep Ts t =
(case t of
\<^const>\<open>Not\<close> => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>All\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>Ex\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>HOL.eq\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>ord_class.less_eq\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>ord_class.less_eq\<close>, _) =>
to_R_rep Ts (eta_expand Ts t 2)
| \<^const>\<open>HOL.conj\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
| \<^const>\<open>HOL.conj\<close> => to_R_rep Ts (eta_expand Ts t 2)
| \<^const>\<open>HOL.disj\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
| \<^const>\<open>HOL.disj\<close> => to_R_rep Ts (eta_expand Ts t 2)
| \<^const>\<open>HOL.implies\<close> $ _ => to_R_rep Ts (eta_expand Ts t 1)
| \<^const>\<open>HOL.implies\<close> => to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>Set.member\<close>, _) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>Set.member\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>Collect\<close>, _) $ t' => to_R_rep Ts t'
| Const (\<^const_name>\<open>Collect\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>bot_class.bot\<close>,
T as Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>])) =>
if total then empty_n_ary_rel (arity_of (R_Rep total) card T)
else Product (atom_seq_product_of (R_Rep total) card T', false_atom)
| Const (\<^const_name>\<open>top_class.top\<close>,
T as Type (\<^type_name>\<open>fun\<close>, [T', \<^typ>\<open>bool\<close>])) =>
if total then atom_seq_product_of (R_Rep total) card T
else Product (atom_seq_product_of (R_Rep total) card T', true_atom)
| Const (\<^const_name>\<open>insert\<close>, Type (_, [T, _])) $ t1 $ t2 =>
if total then
Union (to_S_rep Ts t1, to_R_rep Ts t2)
else
let
val kt1 = to_S_rep Ts t1
val kt2 = to_R_rep Ts t2
in
RelIf (Some kt1,
if arity_of S_Rep card T = 1 then
Override (kt2, Product (kt1, true_atom))
else
Union (Difference (kt2, Product (kt1, false_atom)),
Product (kt1, true_atom)),
Difference (kt2, Product (atom_seq_product_of S_Rep card T,
false_atom)))
end
| Const (\<^const_name>\<open>insert\<close>, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>insert\<close>, _) => to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>trancl\<close>,
Type (_, [Type (_, [Type (_, [T', _]), _]), _])) $ t1 =>
if arity_of S_Rep card T' = 1 then
if total then
Closure (to_R_rep Ts t1)
else
let
val kt1 = to_R_rep Ts t1
val true_core_kt = Closure (Join (kt1, true_atom))
val kTx =
atom_seq_product_of S_Rep card (HOLogic.mk_prodT (`I T'))
val false_mantle_kt =
Difference (kTx,
Closure (Difference (kTx, Join (kt1, false_atom))))
in
Union (Product (Difference (false_mantle_kt, true_core_kt),
false_atom),
Product (true_core_kt, true_atom))
end
else
error "Not supported: Transitive closure for function or pair type."
| Const (\<^const_name>\<open>trancl\<close>, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>inf_class.inf\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
$ t1 $ t2 =>
if total then Intersect (to_R_rep Ts t1, to_R_rep Ts t2)
else partial_set_op true true Intersect Union Ts t1 t2
| Const (\<^const_name>\<open>inf_class.inf\<close>, _) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>inf_class.inf\<close>, _) =>
to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>sup_class.sup\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
$ t1 $ t2 =>
if total then Union (to_R_rep Ts t1, to_R_rep Ts t2)
else partial_set_op true true Union Intersect Ts t1 t2
| Const (\<^const_name>\<open>sup_class.sup\<close>, _) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>sup_class.sup\<close>, _) =>
to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>minus_class.minus\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _]))
$ t1 $ t2 =>
if total then Difference (to_R_rep Ts t1, to_R_rep Ts t2)
else partial_set_op true false Intersect Union Ts t1 t2
| Const (\<^const_name>\<open>minus_class.minus\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (\<^const_name>\<open>minus_class.minus\<close>,
Type (\<^type_name>\<open>fun\<close>,
[Type (\<^type_name>\<open>fun\<close>, [_, \<^typ>\<open>bool\<close>]), _])) =>
to_R_rep Ts (eta_expand Ts t 2)
| Const (\<^const_name>\<open>Pair\<close>, _) $ _ $ _ => to_S_rep Ts t
| Const (\<^const_name>\<open>Pair\<close>, _) $ _ => to_S_rep Ts t
| Const (\<^const_name>\<open>Pair\<close>, _) => to_S_rep Ts t
| Const (\<^const_name>\<open>fst\<close>, _) $ _ => raise SAME ()
| Const (\<^const_name>\<open>fst\<close>, _) => raise SAME ()
| Const (\<^const_name>\<open>snd\<close>, _) $ _ => raise SAME ()
| Const (\<^const_name>\<open>snd\<close>, _) => raise SAME ()
| \<^const>\<open>False\<close> => false_atom
| \<^const>\<open>True\<close> => true_atom
| Free (x as (_, T)) =>
Rel (arity_of (R_Rep total) card T, find_index (curry (op =) x) frees)
| Term.Var _ => error "Not supported: Schematic variables."
| Bound _ => raise SAME ()
| Abs (_, T, t') =>
(case (total, fastype_of1 (T :: Ts, t')) of
(true, \<^typ>\<open>bool\<close>) =>
Comprehension (decls_for S_Rep card Ts T, to_F NONE (T :: Ts) t')
| (_, T') =>
Comprehension (decls_for S_Rep card Ts T @
decls_for (R_Rep total) card (T :: Ts) T',
Subset (rel_expr_for_bound_var card (R_Rep total)
(T' :: T :: Ts) 0,
to_R_rep (T :: Ts) t')))
| t1 $ t2 =>
(case fastype_of1 (Ts, t) of
\<^typ>\<open>bool\<close> =>
if total then
S_rep_from_F NONE (to_F NONE Ts t)
else
RelIf (to_F (SOME true) Ts t, true_atom,
RelIf (Not (to_F (SOME false) Ts t), false_atom,
None))
| T =>
let val T2 = fastype_of1 (Ts, t2) in
case arity_of S_Rep card T2 of
1 => Join (to_S_rep Ts t2, to_R_rep Ts t1)
| arity2 =>
let val res_arity = arity_of (R_Rep total) card T in
Project (Intersect
(Product (to_S_rep Ts t2,
atom_seq_product_of (R_Rep total) card T),
to_R_rep Ts t1),
num_seq arity2 res_arity)
end
end)
| _ => error ("Not supported: Term " ^
quote (Syntax.string_of_term ctxt t) ^ "."))
handle SAME () => R_rep_from_S_rep (fastype_of1 (Ts, t)) (to_S_rep Ts t)
in to_F (if total then NONE else SOME true) [] end
fun bound_for_free total card i (s, T) =
let val js = atom_schema_of (R_Rep total) card T in
([((length js, i), s)],
[TupleSet [], atom_schema_of (R_Rep total) card T |> map (rpair 0)
|> tuple_set_from_atom_schema])
end
fun declarative_axiom_for_rel_expr total card Ts
(Type (\<^type_name>\<open>fun\<close>, [T1, T2])) r =
if total andalso body_type T2 = bool_T then
True
else
All (decls_for S_Rep card Ts T1,
declarative_axiom_for_rel_expr total card (T1 :: Ts) T2
(List.foldl Join r (vars_for_bound_var card S_Rep (T1 :: Ts) 0)))
| declarative_axiom_for_rel_expr total _ _ _ r =
(if total then One else Lone) r
fun declarative_axiom_for_free total card i (_, T) =
declarative_axiom_for_rel_expr total card [] T
(Rel (arity_of (R_Rep total) card T, i))
(* Hack to make the old code work as is with sets. *)
fun unsetify_type (Type (\<^type_name>\<open>set\<close>, [T])) = unsetify_type T --> bool_T
| unsetify_type (Type (s, Ts)) = Type (s, map unsetify_type Ts)
| unsetify_type T = T
fun kodkod_problem_from_term ctxt total raw_card raw_infinite t =
let
val thy = Proof_Context.theory_of ctxt
fun card (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
reasonable_power (card T2) (card T1)
| card (Type (\<^type_name>\<open>prod\<close>, [T1, T2])) = card T1 * card T2
| card \<^typ>\<open>bool\<close> = 2
| card T = Int.max (1, raw_card T)
fun complete (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
concrete T1 andalso complete T2
| complete (Type (\<^type_name>\<open>prod\<close>, Ts)) = forall complete Ts
| complete T = not (raw_infinite T)
and concrete (Type (\<^type_name>\<open>fun\<close>, [T1, T2])) =
complete T1 andalso concrete T2
| concrete (Type (\<^type_name>\<open>prod\<close>, Ts)) = forall concrete Ts
| concrete _ = true
val neg_t =
\<^const>\<open>Not\<close> $ Object_Logic.atomize_term ctxt t
|> map_types unsetify_type
val _ = fold_types (K o check_type ctxt raw_infinite) neg_t ()
val frees = Term.add_frees neg_t []
val bounds =
map2 (bound_for_free total card) (index_seq 0 (length frees)) frees
val declarative_axioms =
map2 (declarative_axiom_for_free total card)
(index_seq 0 (length frees)) frees
val formula =
neg_t |> kodkod_formula_from_term ctxt total card complete concrete frees
|> fold_rev (curry And) declarative_axioms
val univ_card = univ_card 0 0 0 bounds formula
in
{comment = "", settings = [], univ_card = univ_card, tuple_assigns = [],
bounds = bounds, int_bounds = [], expr_assigns = [], formula = formula}
end
fun solve_any_kodkod_problem thy problems =
let
val {debug, overlord, timeout, ...} = Nitpick_Commands.default_params thy []
val deadline = Timeout.end_time timeout
val max_threads = 1
val max_solutions = 1
in
case solve_any_problem debug overlord deadline max_threads max_solutions
problems of
Normal ([], _, _) => "none"
| Normal _ => "genuine"
| TimedOut _ => "unknown"
| Error (s, _) => error ("Kodkod error: " ^ s)
end
val default_raw_infinite = member (op =) [\<^typ>\<open>nat\<close>, \<^typ>\<open>int\<close>]
fun minipick ctxt n t =
let
val thy = Proof_Context.theory_of ctxt
val {total_consts, ...} = Nitpick_Commands.default_params thy []
val totals =
total_consts |> Option.map single |> the_default [true, false]
fun problem_for (total, k) =
kodkod_problem_from_term ctxt total (K k) default_raw_infinite t
in
(totals, 1 upto n)
|-> map_product pair
|> map problem_for
|> solve_any_kodkod_problem (Proof_Context.theory_of ctxt)
end
fun minipick_expect ctxt expect n t =
if getenv "KODKODI" <> "" then
if minipick ctxt n t = expect then ()
else error ("\"minipick_expect\" expected " ^ quote expect)
else
()
end;